-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
58 lines (47 loc) · 2.09 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import torch.optim as optim
import matplotlib.pyplot as plt
from torch.nn.parameter import Parameter
import numpy as np
class Net(nn.Module):
def __init__(self, nb_chl):
# self.output_dim = output_dim
super(Net, self).__init__()
weight = np.random.random(nb_chl[1:])
self.weight = Parameter(torch.from_numpy(weight).float())
def forward(self, input):
output = torch.mul(self.weight, input)
return output
net = Net((None, 2, 32, 32)).cuda()
criterion = nn.MSELoss()
optimizer = optim.Adam(net.parameters(), lr=1e-3, betas=(0.9, 0.999), eps=1e-8)
class weather(nn.Module):
def __init__(self, input_vector_size):
super(weather, self).__init__()
self.input_vector = input_vector_size
self.linear = nn.Linear(in_features=self.input_vector, out_features= 49)
self.deconv1 = nn.ConvTranspose2d(in_channels=1, out_channels=4, kernel_size=5)
self.deconv2 = nn.ConvTranspose2d(in_channels=4, out_channels=8, kernel_size=5)
self.deconv3 = nn.ConvTranspose2d(in_channels=8, out_channels=8, kernel_size=3, stride=2)
self.deconv4 = nn.ConvTranspose2d(in_channels=8, out_channels=8, kernel_size=5, stride=2)
self.deconv5 = nn.ConvTranspose2d(in_channels=8, out_channels=4, kernel_size=5, stride=3)
self.deconv6 = nn.ConvTranspose2d(in_channels=4, out_channels=1, kernel_size=4)
self.relu = nn.ReLU()
def forward(self, weather_vector):
weather = self.relu(self.linear(weather_vector)).view(-1, 1, 7, 7)
weather = self.relu(self.deconv1(weather))
weather = self.relu(self.deconv2(weather))
weather = self.relu(self.deconv3(weather))
weather = self.relu(self.deconv4(weather))
weather = self.relu(self.deconv5(weather))
weather = self.deconv6(weather)
return weather
net = weather(8)
if __name__ == '__main__':
a = np.array([0., 1., 0., 0., 0., 0., 0., 0.])
a = Variable(torch.from_numpy(a).float())
out = net(a)
print(out)