-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmain_ssl.py
399 lines (377 loc) · 21.2 KB
/
main_ssl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
import argparse
from model import wideresnet
from model.preactresnet import get_preact_resnet
from model.densenet import get_densenet
from lib.utils.avgmeter import AverageMeter
from lib.utils.zca import apply_zca
from lib.dataloader import cifar10_dataset, get_ssl_sampler, cifar100_dataset, svhn_dataset
import os
from os import path
import time
import shutil
import ast
import numpy as np
from lib.utils.mixup import mixup_criterion, mixup_data
from itertools import cycle
import math
def arg_as_list(s):
v = ast.literal_eval(s)
if type(v) is not list:
raise argparse.ArgumentTypeError("Argument \"%s\" is not a list" % (s))
return v
parser = argparse.ArgumentParser(description='Mixup and Manifold Mixup Based Semi-supervised learning for '
'WideResNet,PreActResNet,DenseNet in Cifar10 and Cifar100')
# Dataset Parameters
parser.add_argument('-bp', '--base_path', default="/data/fhz")
parser.add_argument('--dataset', default="Cifar10", type=str, help="The dataset name")
parser.add_argument('--zca', action='store_true', help='if we use zca preprocess')
parser.add_argument('-is', "--image-size", default=[32, 32], type=arg_as_list,
metavar='Image Size List', help='the size of h * w for image')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('-b', '--batch-size', default=256, type=int,
metavar='N', help='mini-batch size (default: 256)')
# Semi-supervised Train Strategy Parameters
parser.add_argument('-t', '--train-time', default=1, type=int,
metavar='N', help='the x-th time of training')
parser.add_argument('--epochs', default=600, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('-am', "--alpha-max", default=1, type=float,
help="the max weight(alpha) for the balance between supervised and unsupervised loss")
parser.add_argument('-amf', '--alpha-modify-factor', default=0.4, type=float,
help="weight(alpha) will get alpha-max at amf * epochs")
parser.add_argument('--dp', '--data-parallel', action='store_false', help='Not Use Data Parallel')
parser.add_argument('--print-freq', '-p', default=10, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('--resume-arg', action='store_false', help='if we not resume the argument')
# Mixup Strategy Parameters
parser.add_argument('--mixup', default=False, type=bool, help="use mixup method")
parser.add_argument('--manifold-mixup', default=False, type=bool, help="use manifold mixup method")
parser.add_argument('--mll', "--mixup-layer-list", default=[0, 2], type=arg_as_list,
help="The mixup layer list for manifold mixup strategy")
parser.add_argument('--mas', "--mixup-alpha-supervised", default=0.1, type=float,
help="the alpha for supervised mixup method")
parser.add_argument('--mau', "--mixup-alpha-unsupervised", default=2, type=float,
help="the alpha for unsupervised mixup method")
# Deep Learning Model Parameters
parser.add_argument('--net-name', default="wideresnet", type=str, help="the name for network to use")
parser.add_argument('--depth', default=28, type=int, metavar='D', help="the depth of neural network")
parser.add_argument('--width', default=2, type=int, metavar='W', help="the width of neural network")
parser.add_argument('--dr', '--drop-rate', default=0, type=float, help='Dropout Rate usually 0 when use mixup method')
# Optimizer Parameters
parser.add_argument('--optimizer', default="SGD", type=str, metavar="Optimizer Name")
parser.add_argument('--nesterov', action='store_true', help='nesterov in sgd')
parser.add_argument('-m', '--momentum', default=0.9, type=float, metavar='M', help='Momentum in SGD')
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('-ad', "--adjust-lr", default=[300, 400, 500], type=arg_as_list,
help="The milestone list for adjust learning rate")
parser.add_argument('--lr-decay-ratio', default=0.2, type=float)
parser.add_argument('--wd', '--weight-decay', default=5e-4, type=float)
parser.add_argument('--wul', '--warm-up-lr', default=0.02, type=float, help='the learning rate for warm up method')
# GPU Parameters
parser.add_argument("--gpu", default="0,1", type=str, metavar='GPU plans to use', help='The GPU id plans to use')
args = parser.parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
import torch
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from torch.optim.lr_scheduler import MultiStepLR
import torch.nn as nn
def main(args=args):
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
zca_mean = None
zca_components = None
# build dataset
if args.dataset == "Cifar10":
dataset_base_path = path.join(args.base_path, "dataset", "cifar")
train_dataset = cifar10_dataset(dataset_base_path)
test_dataset = cifar10_dataset(dataset_base_path, train_flag=False)
sampler_valid, sampler_train_l, sampler_train_u = get_ssl_sampler(
torch.tensor(train_dataset.targets, dtype=torch.int32), 500, 400, 10)
test_dloader = DataLoader(test_dataset, batch_size=args.batch_size, num_workers=args.workers, pin_memory=True)
valid_dloader = DataLoader(train_dataset, batch_size=args.batch_size, num_workers=args.workers, pin_memory=True,
sampler=sampler_valid)
train_dloader_l = DataLoader(train_dataset, batch_size=args.batch_size, num_workers=args.workers,
pin_memory=True,
sampler=sampler_train_l)
train_dloader_u = DataLoader(train_dataset, batch_size=args.batch_size, num_workers=args.workers,
pin_memory=True,
sampler=sampler_train_u)
num_classes = 10
if args.zca:
zca_mean = np.load(os.path.join(dataset_base_path, 'cifar10_zca_mean.npy'))
zca_components = np.load(os.path.join(dataset_base_path, 'cifar10_zca_components.npy'))
zca_mean = torch.from_numpy(zca_mean).view(1, -1).float().cuda()
zca_components = torch.from_numpy(zca_components).float().cuda()
elif args.dataset == "Cifar100":
dataset_base_path = path.join(args.base_path, "dataset", "cifar")
train_dataset = cifar100_dataset(dataset_base_path)
test_dataset = cifar100_dataset(dataset_base_path, train_flag=False)
sampler_valid, sampler_train_l, sampler_train_u = get_ssl_sampler(
torch.tensor(train_dataset.targets, dtype=torch.int32), 50, 40, 100)
test_dloader = DataLoader(test_dataset, batch_size=args.batch_size, num_workers=args.workers, pin_memory=True)
valid_dloader = DataLoader(train_dataset, batch_size=args.batch_size, num_workers=args.workers, pin_memory=True,
sampler=sampler_valid)
train_dloader_l = DataLoader(train_dataset, batch_size=args.batch_size, num_workers=args.workers,
pin_memory=True,
sampler=sampler_train_l)
train_dloader_u = DataLoader(train_dataset, batch_size=args.batch_size, num_workers=args.workers,
pin_memory=True,
sampler=sampler_train_u)
num_classes = 100
elif args.dataset == "SVHN":
dataset_base_path = path.join(args.base_path, "dataset", "svhn")
train_dataset = svhn_dataset(dataset_base_path)
test_dataset = svhn_dataset(dataset_base_path, train_flag=False)
sampler_valid, sampler_train_l, sampler_train_u = get_ssl_sampler(
torch.tensor(train_dataset.labels, dtype=torch.int32), 732, 100, 10)
test_dloader = DataLoader(test_dataset, batch_size=args.batch_size, num_workers=args.workers, pin_memory=True)
valid_dloader = DataLoader(train_dataset, batch_size=args.batch_size, num_workers=args.workers, pin_memory=True,
sampler=sampler_valid)
train_dloader_l = DataLoader(train_dataset, batch_size=args.batch_size, num_workers=args.workers,
pin_memory=True,
sampler=sampler_train_l)
train_dloader_u = DataLoader(train_dataset, batch_size=args.batch_size, num_workers=args.workers,
pin_memory=True,
sampler=sampler_train_u)
num_classes = 10
else:
raise NotImplementedError("Dataset {} Not Implemented".format(args.dataset))
if args.net_name == "wideresnet":
model = wideresnet.WideResNet(depth=args.depth, width=args.width,
num_classes=num_classes, data_parallel=args.dp, drop_rate=args.dr)
elif "preact" in args.net_name:
model = get_preact_resnet(args.net_name, num_classes=num_classes,
data_parallel=args.dp,
drop_rate=args.dr)
elif "densenet" in args.net_name:
model = get_densenet(args.net_name, num_classes=num_classes,
data_parallel=args.dp, drop_rate=args.dr)
else:
raise NotImplementedError("model {} not implemented".format(args.net_name))
model = model.cuda()
input("Begin the {} time's semi-supervised training, Dataset:{} Mixup Method:{} \
Manifold Mixup Method :{}".format(args.train_time, args.dataset, args.mixup, args.manifold_mixup))
criterion_l = nn.CrossEntropyLoss()
criterion_u = nn.MSELoss()
if args.optimizer == "SGD":
optimizer = torch.optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.wd,
nesterov=args.nesterov)
else:
raise NotImplementedError("{} not find".format(args.optimizer))
scheduler = MultiStepLR(optimizer, milestones=args.adjust_lr, gamma=args.lr_decay_ratio)
writer_log_dir = "{}/{}-SSL/runs/train_time:{}".format(args.base_path, args.dataset, args.train_time)
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
if args.resume_arg:
args = checkpoint['args']
args.start_epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
else:
raise FileNotFoundError("Checkpoint Resume File {} Not Found".format(args.resume))
else:
if os.path.exists(writer_log_dir):
flag = input("{}-SSL train_time:{} will be removed, input yes to continue:".format(
args.dataset, args.train_time))
if flag == "yes":
shutil.rmtree(writer_log_dir, ignore_errors=True)
writer = SummaryWriter(log_dir=writer_log_dir)
for epoch in range(args.start_epoch, args.epochs):
scheduler.step(epoch)
if epoch == 0:
# do warm up
modify_lr_rate(opt=optimizer, lr=args.wul)
alpha = alpha_schedule(epoch=epoch)
train(train_dloader_l, train_dloader_u, model=model, criterion_l=criterion_l, criterion_u=criterion_u,
optimizer=optimizer, epoch=epoch, writer=writer, alpha=alpha, zca_mean=zca_mean,
zca_components=zca_components)
test(valid_dloader, test_dloader, model=model, criterion=criterion_l, epoch=epoch, writer=writer,
num_classes=num_classes, zca_mean=zca_mean, zca_components=zca_components)
save_checkpoint({
'epoch': epoch + 1,
'args': args,
"state_dict": model.state_dict(),
'optimizer': optimizer.state_dict(),
})
if epoch == 0:
modify_lr_rate(opt=optimizer, lr=args.lr)
def train(train_dloader_l, train_dloader_u, model, criterion_l, criterion_u, optimizer, epoch, writer, alpha,
zca_mean=None, zca_components=None):
# some records
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
losses_supervised = AverageMeter()
losses_unsupervised = AverageMeter()
model.train()
end = time.time()
optimizer.zero_grad()
epoch_length = len(train_dloader_u)
i = 0
for (image_l, label_l), (image_u, _) in zip(cycle(train_dloader_l), train_dloader_u):
if image_l.size(0) != image_u.size(0):
bt_size = min(image_l.size(0), image_u.size(0))
image_l = image_l[0:bt_size]
image_u = image_u[0:bt_size]
label_l = label_l[0:bt_size]
else:
bt_size = image_l.size(0)
data_time.update(time.time() - end)
image_l = image_l.float().cuda()
image_u = image_u.float().cuda()
label_l = label_l.long().cuda()
if args.zca:
image_l = apply_zca(image_l, zca_mean, zca_components)
image_u = apply_zca(image_u, zca_mean, zca_components)
if args.mixup:
mixed_image_l, label_a, label_b, lam = mixup_data(image_l, label_l, args.mas)
cls_result_l = model(mixed_image_l)
loss_supervised = mixup_criterion(criterion_l, cls_result_l, label_a, label_b, lam)
# here label_u_approx is not with any grad
with torch.no_grad():
label_u_approx = torch.softmax(model(image_u), dim=1)
mixed_image_u, label_a_approx, label_b_approx, lam = mixup_data(image_u, label_u_approx, args.mau)
cls_result_u = model(mixed_image_u)
cls_result_u = torch.log_softmax(cls_result_u, dim=1)
label_u_approx_mixup = lam * label_a_approx + (1 - lam) * label_b_approx
loss_unsupervised = -1 * torch.mean(torch.sum(label_u_approx_mixup * cls_result_u, dim=1))
loss = loss_supervised + alpha * loss_unsupervised
elif args.manifold_mixup:
cls_result_l, label_a, label_b, lam = model(image_l, mixup_alpha=args.mas, label=label_l,
manifold_mixup=True,
mixup_layer_list=args.mll)
loss_supervised = mixup_criterion(criterion_l, cls_result_l, label_a, label_b, lam)
# here label_u_approx is not with any grad
with torch.no_grad():
label_u_approx = torch.softmax(model(image_u), dim=1)
cls_result_u, label_a_approx, label_b_approx, lam = model(image_u, mixup_alpha=args.mas,
label=label_u_approx,
manifold_mixup=True,
mixup_layer_list=args.mll)
cls_result_u = torch.softmax(cls_result_u, dim=1)
label_u_approx_mixup = lam * label_a_approx + (1 - lam) * label_b_approx
loss_unsupervised = criterion_u(cls_result_u, label_u_approx_mixup)
loss = loss_supervised + 10 * alpha * loss_unsupervised
else:
cls_result_l = model(image_l)
loss = criterion_l(cls_result_l, label_l)
loss_supervised = loss.detach()
loss_unsupervised = torch.zeros(loss.size())
loss.backward()
losses.update(float(loss.item()), bt_size)
losses_supervised.update(float(loss_supervised.item()), bt_size)
losses_unsupervised.update(float(loss_unsupervised.item()), bt_size)
optimizer.step()
optimizer.zero_grad()
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
train_text = 'Epoch: [{0}][{1}/{2}]\t' \
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' \
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t' \
'Cls Loss {cls_loss.val:.4f} ({cls_loss.avg:.4f})\t' \
'Regularization Loss {reg_loss.val:.4f} ({reg_loss.avg:.4f})\t' \
'Total Loss {total_loss.val:.4f} ({total_loss.avg:.4f})\t'.format(
epoch, i + 1, epoch_length, batch_time=batch_time, data_time=data_time,
cls_loss=losses_supervised, reg_loss=losses_unsupervised, total_loss=losses)
print(train_text)
i += 1
writer.add_scalar(tag="Train/cls_loss", scalar_value=losses_supervised.avg, global_step=epoch + 1)
writer.add_scalar(tag="Train/reg_loss", scalar_value=losses_unsupervised.avg, global_step=epoch + 1)
writer.add_scalar(tag="Train/total_loss", scalar_value=losses.avg, global_step=epoch + 1)
return losses.avg
def test(valid_dloader, test_dloader, model, criterion, epoch, writer, num_classes, zca_mean=None, zca_components=None):
model.eval()
# calculate result for valid dataset
losses = AverageMeter()
all_score = []
all_label = []
for i, (image, label) in enumerate(valid_dloader):
image = image.float().cuda()
if args.zca:
image = apply_zca(image, zca_mean, zca_components)
label = label.long().cuda()
with torch.no_grad():
cls_result = model(image)
label_onehot = torch.zeros(label.size(0), num_classes).cuda().scatter_(1, label.view(-1, 1), 1)
loss = criterion(cls_result, label)
losses.update(float(loss.item()), image.size(0))
# here we add the all score and all label into one list
all_score.append(torch.softmax(cls_result, dim=1))
# turn label into one-hot code
all_label.append(label_onehot)
writer.add_scalar(tag="Valid/cls_loss", scalar_value=losses.avg, global_step=epoch + 1)
all_score = torch.cat(all_score, dim=0).detach()
all_label = torch.cat(all_label, dim=0).detach()
_, y_true = torch.topk(all_label, k=1, dim=1)
_, y_pred = torch.topk(all_score, k=5, dim=1)
# calculate accuracy by hand
top_1_accuracy = float(torch.sum(y_true == y_pred[:, :1]).item()) / y_true.size(0)
top_5_accuracy = float(torch.sum(y_true == y_pred).item()) / y_true.size(0)
writer.add_scalar(tag="Valid/top 1 accuracy", scalar_value=top_1_accuracy, global_step=epoch + 1)
if args.dataset == "Cifar100":
writer.add_scalar(tag="Valid/top 5 accuracy", scalar_value=top_5_accuracy, global_step=epoch + 1)
# calculate result for test dataset
losses = AverageMeter()
all_score = []
all_label = []
for i, (image, label) in enumerate(test_dloader):
image = image.float().cuda()
if args.zca:
image = apply_zca(image, zca_mean, zca_components)
label = label.long().cuda()
with torch.no_grad():
cls_result = model(image)
label_onehot = torch.zeros(label.size(0), num_classes).cuda().scatter_(1, label.view(-1, 1), 1)
loss = criterion(cls_result, label)
losses.update(float(loss.item()), image.size(0))
# here we add the all score and all label into one list
all_score.append(torch.softmax(cls_result, dim=1))
# turn label into one-hot code
all_label.append(label_onehot)
writer.add_scalar(tag="Test/cls_loss", scalar_value=losses.avg, global_step=epoch + 1)
all_score = torch.cat(all_score, dim=0).detach()
all_label = torch.cat(all_label, dim=0).detach()
_, y_true = torch.topk(all_label, k=1, dim=1)
_, y_pred = torch.topk(all_score, k=5, dim=1)
# calculate accuracy by hand
top_1_accuracy = float(torch.sum(y_true == y_pred[:, :1]).item()) / y_true.size(0)
top_5_accuracy = float(torch.sum(y_true == y_pred).item()) / y_true.size(0)
writer.add_scalar(tag="Test/top 1 accuracy", scalar_value=top_1_accuracy, global_step=epoch + 1)
if args.dataset == "Cifar100":
writer.add_scalar(tag="Test/top 5 accuracy", scalar_value=top_5_accuracy, global_step=epoch + 1)
return losses.avg
def save_checkpoint(state, filename='checkpoint.pth.tar'):
"""
:param state: a dict including:{
'epoch': epoch + 1,
'args': args,
"state_dict": model.state_dict(),
'optimizer': optimizer.state_dict(),
}
:param filename: the filename for store
:return:
"""
filefolder = "{}/{}-SSL/parameter/train_time:{}".format(args.base_path, args.dataset, args.train_time)
if not path.exists(filefolder):
os.makedirs(filefolder)
torch.save(state, path.join(filefolder, filename))
def modify_lr_rate(opt, lr):
for param_group in opt.param_groups:
param_group['lr'] = lr
def alpha_schedule(epoch):
max_epoch = args.alpha_modify_factor * args.epochs
alpha = args.alpha_max * math.exp(-5 * (1 - min(1, epoch / max_epoch)) ** 2)
return alpha
if __name__ == "__main__":
main()