-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
192 lines (156 loc) · 8.19 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import datetime
import math
import sys
import time
import logging
import os
import torch
from torch.nn.parallel import DistributedDataParallel
from torch.utils.data import DataLoader
import dist
from models.encoder import SparseEncoder
from models.decoder import LightDecoder
from models.MambaMIM import MambaMIM
from models import build_sparse_encoder
from utils.sampler import DistInfiniteBatchSampler, worker_init_fn
from utils import arg_util, misc
from utils.med_dataset import get_loader
from utils.lr_control import lr_wd_annealing
cpu_num = 1
os.environ['OMP_NUM_THREADS'] = str(cpu_num)
os.environ['OPENBLAS_NUM_THREADS'] = str(cpu_num)
os.environ['MKL_NUM_THREADS'] = str(cpu_num)
os.environ['VECLIB_MAXIMUM_THREADS'] = str(cpu_num)
os.environ['NUMEXPR_NUM_THREADS'] = str(cpu_num)
torch.set_num_threads(cpu_num)
torch.multiprocessing.set_sharing_strategy('file_system')
class LocalDDP(torch.nn.Module):
def __init__(self, module):
super(LocalDDP, self).__init__()
self.module = module
def forward(self, *args, **kwargs):
return self.module(*args, **kwargs)
def main_pt():
args: arg_util.Args = arg_util.init_dist_and_get_args()
print(f'initial args:\n{str(args)}')
args.log_epoch()
# build data
print(f'[build data for pre-training] ...\n')
dataset_train = get_loader(args.data_path, args.input_size)
data_loader_train = DataLoader(
dataset=dataset_train, num_workers=args.dataloader_workers, pin_memory=True,
batch_sampler=DistInfiniteBatchSampler(
dataset_len=len(dataset_train), glb_batch_size=args.glb_batch_size,
shuffle=True, filling=True, rank=dist.get_rank(), world_size=dist.get_world_size(),
), worker_init_fn=worker_init_fn
)
itrt_train, iters_train = iter(data_loader_train), len(data_loader_train)
print(f'[dataloader] gbs={args.glb_batch_size}, lbs={args.batch_size_per_gpu}, iters_train={iters_train}')
# build encoder and decoder
enc: SparseEncoder = build_sparse_encoder(args.model, input_size=args.input_size, sbn=args.sbn, drop_path_rate=args.dp, verbose=False)
dec = LightDecoder(enc.downsample_raito, sbn=args.sbn)
model_without_ddp = MambaMIM(
sparse_encoder=enc, dense_decoder=dec, mask_ratio=args.mask,
densify_norm=args.densify_norm, sbn=args.sbn,
).to(args.device)
print(f'[PT model] model = {model_without_ddp}\n')
# the model has been randomly initialized in their construction time
# now try to load some checkpoint as model weight initialization; this ONLY loads the model weights
model = LocalDDP(model_without_ddp)
# build optimizer and lr_scheduler
optimizer = torch.optim.AdamW(params=model_without_ddp.parameters(), lr=args.lr, weight_decay=1e-5)
# try to resume the experiment from some checkpoint.pth; this will load model weights, optimizer states, and last epoch (ep_start)
# if loaded, ep_start will be greater than 0
ep_start, performance_desc = misc.load_checkpoint(args.resume_from, model_without_ddp, optimizer)
if ep_start >= args.ep: # load from a complete checkpoint file
print(f' [*] [PT already done] Min/Last Recon Loss: {performance_desc}')
else: # perform pre-training
tb_lg = misc.TensorboardLogger(args.tb_lg_dir, is_master=dist.is_master(), prefix='pt')
min_loss = 1e9
print(f'[PT start] from ep{ep_start}')
pt_start_time = time.time()
for ep in range(ep_start, args.ep):
ep_start_time = time.time()
tb_lg.set_step(ep * iters_train)
if hasattr(itrt_train, 'set_epoch'):
itrt_train.set_epoch(ep)
stats = pre_train_one_ep(ep, args, tb_lg, itrt_train, iters_train, model, optimizer)
last_loss = stats['last_loss']
min_loss = min(min_loss, last_loss)
performance_desc = f'{min_loss:.4f} {last_loss:.4f}'
misc.save_checkpoint_with_meta_info_and_opt_state(f'{args.model}_withdecoder_ct_pretrained.pth', args, ep, performance_desc, model_without_ddp.state_dict(with_config=True), optimizer.state_dict())
misc.save_checkpoint_model_weights_only(f'{args.model}_ct_pretrained_mambamim_timm_style.pth', args, model_without_ddp.sparse_encoder.state_dict())
ep_cost = round(time.time() - ep_start_time, 2) + 1 # +1s: approximate the following logging cost
remain_secs = (args.ep-1 - ep) * ep_cost
remain_time = datetime.timedelta(seconds=round(remain_secs))
finish_time = time.strftime("%m-%d %H:%M", time.localtime(time.time() + remain_secs))
print(f' [*] [ep{ep}/{args.ep}] Min/Last Recon Loss: {performance_desc}, Cost: {ep_cost}s, Remain: {remain_time}, Finish @ {finish_time}')
args.cur_ep = f'{ep + 1}/{args.ep}'
args.remain_time, args.finish_time = str(remain_time), str(finish_time)
args.last_loss = last_loss
args.log_epoch()
tb_lg.update(min_loss=min_loss, head='train', step=ep)
tb_lg.update(rest_hours=round(remain_secs/60/60, 2), head='z_burnout', step=ep)
tb_lg.flush()
# finish pre-training
tb_lg.update(min_loss=min_loss, head='result', step=ep_start)
tb_lg.update(min_loss=min_loss, head='result', step=args.ep)
tb_lg.flush()
print(f'final args:\n{str(args)}')
print('\n\n')
print(f' [*] [PT finished] Min/Last Recon Loss: {performance_desc}, Total Cost: {(time.time() - pt_start_time) / 60 / 60:.1f}h\n')
print('\n\n')
tb_lg.close()
time.sleep(10)
args.remain_time, args.finish_time = '-', time.strftime("%m-%d %H:%M", time.localtime(time.time()))
args.log_epoch()
def pre_train_one_ep(ep, args: arg_util.Args, tb_lg: misc.TensorboardLogger, itrt_train, iters_train, model: DistributedDataParallel, optimizer):
model.train()
me = misc.MetricLogger(delimiter=' ')
me.add_meter('max_lr', misc.SmoothedValue(window_size=1, fmt='{value:.5f}'))
header = f'[PT] Epoch {ep}:'
optimizer.zero_grad()
early_clipping = args.clip > 0 and not hasattr(optimizer, 'global_grad_norm')
late_clipping = hasattr(optimizer, 'global_grad_norm')
if early_clipping:
params_req_grad = [p for p in model.parameters() if p.requires_grad]
for it, inp in enumerate(me.log_every(iters_train, itrt_train, 3, header)):
# adjust lr and wd
min_lr, max_lr, min_wd, max_wd = lr_wd_annealing(optimizer, args.lr, args.wd, args.wde, it + ep * iters_train, args.wp_ep * iters_train, args.ep * iters_train)
# forward and backward
# print(inp)
temp = []
for crop_per_batch in inp:
temp.append(crop_per_batch["image"])
inp = torch.cat(temp, dim=0)
inp = inp.to(args.device, non_blocking=True)
MambaSparK.forward
loss = model(inp, active_b1fff=None, vis=False)
optimizer.zero_grad()
loss.backward()
loss = loss.item()
if not math.isfinite(loss):
print(f'[rk{dist.get_rank():02d}] Loss is {loss}, stopping training!', force=True, flush=True)
sys.exit(-1)
# optimize
grad_norm = None
if early_clipping: grad_norm = torch.nn.utils.clip_grad_norm_(params_req_grad, args.clip).item()
optimizer.step()
if late_clipping: grad_norm = optimizer.global_grad_norm
torch.cuda.synchronize()
# log
me.update(last_loss=loss)
me.update(max_lr=max_lr)
tb_lg.update(loss=me.meters['last_loss'].global_avg, head='train_loss')
tb_lg.update(sche_lr=max_lr, head='train_hp/lr_max')
tb_lg.update(sche_lr=min_lr, head='train_hp/lr_min')
tb_lg.update(sche_wd=max_wd, head='train_hp/wd_max')
tb_lg.update(sche_wd=min_wd, head='train_hp/wd_min')
if grad_norm is not None:
me.update(orig_norm=grad_norm)
tb_lg.update(orig_norm=grad_norm, head='train_hp')
tb_lg.set_step()
me.synchronize_between_processes()
return {k: meter.global_avg for k, meter in me.meters.items()}
if __name__ == '__main__':
main_pt()