-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPhiStart.m
executable file
·661 lines (499 loc) · 19.9 KB
/
PhiStart.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
(* ************************************************************** *)
(* *)
(* PhiStart.m *)
(* *)
(* ************************************************************** *)
(*
This is the startup file of PHI.
You'll most likely only need to edit the section
"CHOOSE CONFIGURATION AND LAGRANGIANS" below.
If you want to customize further, put here model independent
definitions and/or definitions common to all models.
This file is read after loading the sub-packages.
To have extra definitions read before anything else, put them
in 'First.m'.
Model specific definitions and usage definitions for classes of
lagrangians are in the relevant configuration file in
the directory 'Configurations'.
You can override these in the present file
(see "EXTRA CONFIGURATION").
If you are running UNIX (Linux), you can put a copy of
the present file in
~/.Mathematica/<version>/AddOns/Applications/FeynCalc/Phi/
(create the necessary directories) and it will override
the file in the installation directory.
Coupling files for PHI and FeynArts are in the
directory 'CouplingVectors'.
Lagrangians for PHI are in the directory
'Lagrangians' and renormalization factors in the
directory 'Factors'.
*)
(* ************************************************************** *)
(* ************************************************************** *)
(* Abbreviations *)
FeynCalc`Objects`PMV::usage =
"PMV[x_,opts___] := PhiMesonIsoVector[opts][x].";
Begin["`Package`"]
End[]
Begin["`PhiStart`Private`"]
PMV[x_,opts___] :=
PhiMesonIsoVector[opts][x];
(* ************************************************************** *)
(* Adjoints and conjugates *)
Adjoint[UMatrix[UQuarkMass[a___],b___]] :=
UMatrix[UQuarkMass[a],b];
DecayConstant/:
Conjugate[ax_DecayConstant]=
ax;
ParticleMass/:
Conjugate[ax_ParticleMass]=
ax;
QuarkCondensate/:
Conjugate[ax_QuarkCondensate]=
ax;
CouplingConstant/:
Conjugate[ax_CouplingConstant]=
ax;
(* ************************************************************** *)
(* Variable boxes *)
VariableBoxes["p",ParticlesNumber->12];
VariableBoxes["q",ParticlesNumber->2];
VariableBoxes["i",ParticlesNumber->12];
VariableBoxes["I",ParticlesNumber->12];
VariableBoxes["n",ParticlesNumber->12];
VariableBoxes["j",ParticlesNumber->12];
VariableBoxes["k",ParticlesNumber->12];
VariableBoxes["\[Mu]",ParticlesNumber->12];
k/: Format[k,TraditionalForm] :=
StyleForm["k",FontSlant->"Italic"];
DiracTrace/:
MakeBoxes[DiracTrace[a__,DiracTraceEvaluate->False],TraditionalForm]:=
MakeBoxes[DiracTrace[a],TraditionalForm];
(* ************************************************************** *)
(* Change a few FeynArts definitions *)
(* FeynArts 3 uses CTOrder instead of CountertermOrder *)
If[ FileNames["*.jar", {ToFileName[$FeynCalcDirectory, "FeynArts"]}]=!= {},
CountertermOrder = FeynArts`CTOrder
];
(* Labels for lines of Feynman diagrams.
If the FeynArts TeXToPS works on your system,
you can use e.g. "\\phi instead of "\[CurlyPhi]",
so that TeX comes out right too *)
(*FALabel[_,phii_]:="\[Psi]"<>ToString[phii];*)
FALabel[PhiMeson,0] :=
"\[CurlyPhi]";
FALabel[PhiMeson[0],_] :=
"\[CurlyPhi]";
FeynArts`TheLabel[PseudoScalar1] :=
"\[CurlyPhi]";
FALabel[Pion,0] :=
"\[Pi]";
FALabel[Pion[0],_] :=
"\[Pi]";
FeynArts`TheLabel[PseudoScalar2] :=
"\[Pi]";
FALabel[Kaon,0] :=
"K";
FALabel[Kaon[0],_] :=
"K";
FeynArts`TheLabel[PseudoScalar6] :=
"K";
FALabel[KaonPlus,0] :=
"K+";
FALabel[KaonPlus[0],_] :=
"K+";
FeynArts`TheLabel[PseudoScalar7] :=
"K+";
FALabel[KaonZero,0] :=
"K0";
FALabel[KaonZero[0],_] :=
"K0";
FeynArts`TheLabel[PseudoScalar8] :=
"K0";
FALabel[KaonZeroBar,0] :=
"K0_";
FALabel[KaonZeroBar[0],_] :=
"K0_";
FeynArts`TheLabel[PseudoScalar9] :=
"K0_";
FALabel[KaonMinus,0] :=
"K-";
FALabel[KaonMinus[0],_] :=
"K-";
FeynArts`TheLabel[PseudoScalar10] :=
"K-";
FALabel[Photon,0] :=
"\[Gamma]";
FALabel[Photon[0],_] :=
"\[Gamma]";
FeynArts`TheLabel[Vector1] :=
"\[Gamma]";
FALabel[Vector[0],0] :=
"V";
FALabel[Vector[0][0],_] :=
"V";
FeynArts`TheLabel[Vector0] :=
"V";
FALabel[AxialVector[0],0] :=
"A";
FALabel[AxialVector[0][0],_] :=
"A";
FeynArts`TheLabel[AxialVector0] :=
"A";
FALabel[Fermion[1],0] :=
"\[Psi]";
FALabel[Fermion[1][0],_] :=
"\[Psi]";
FeynArts`TheLabel[Fermion1] :=
"\[Psi]";
FALabel[Fermion[1,1],1] :=
"\[Nu]";
FALabel[Fermion[1,1][1],_] :=
"\[Nu]";
FALabel[Nucleon,0] :=
"N";
FALabel[Nucleon[0],_] :=
"N";
FeynArts`TheLabel[Fermion20] :=
"N";
FALabel[Electron,0] :=
"e";
FALabel[Electron[0],_] :=
"e";
FeynArts`TheLabel[Fermion7] :=
"e";
FALabel[Scalar[0],0] :=
"S";
FALabel[Scalar[0][0],_] :=
"S";
FeynArts`TheLabel[Scalar0] :=
"S";
FALabel[Scalar[1],0] :=
"S";
FALabel[Scalar[1][0],_] :=
"S";
FeynArts`TheLabel[Scalar1] :=
"S";
FALabel[Scalar[2],0] :=
"s";
FALabel[Scalar[2][0],_] :=
"s";
FeynArts`TheLabel[Scalar2] :=
"s";
FALabel[PseudoScalar[0],0] :=
"P";
FALabel[PseudoScalar[0][0],_] :=
"P";
FeynArts`TheLabel[PseudoScalar0] :=
"P";
(* ************************************************************** *)
(* Change a few FeynCalc options *)
FeynCalc`Lagrangian::usage =
"Lagrangian[m[pars]] returns the raw form of the lagrangian of the model \
m and with parameters pars (e.g. the dimension of the gauge group and the \
order in the perturbative expansion). To get the full form, use \
ArgumentsSupply. Lagrangian[\"oqu\"] gives the unpolarized quark operator. \
Lagrangian[\"oqp\"] gives the polarized quark operator.";
FeynCalc`CouplingConstant::usage =
"CouplingConstant is the head of coupling constants. CouplingConstant \
takes three extra optional arguments, with head RenormalizationState, \
RenormalizationScheme and ExpansionState respectively. E.g. \
CouplingConstant[QED[1]] is the unit charge, CouplingConstant[ChPT2[4],1] \
is the first of the coupling constants of the lagrangian ChPT2[4]. \
CouplingConstant[a_,b_,c___][i_] := \
CouplingConstant[a,b,RenormalizationState[i],c]. \
CouplingConstant is also an option for several Feynman rule functions and for \
CovariantD and FieldStrength.";
$Multiplications = Union[$Multiplications,{Times, NM, IsoDot, IsoCross, IsoSymmetricCross, UDot}];
$DistributiveFunctions = Union[$DistributiveFunctions, {Conjugate, ComplexConjugate, Transpose, Adjoint, UTrace, UTrace1, Iso}];
$Containers = {IsoVector, UVector, UMatrix};
Options[CovariantFieldDerivative] = {Explicit->True, DiagonalToU->True, SUNN->2, UDimension->Automatic};
CovariantFieldDerivative::usage =
"CovariantFieldDerivative[f[x],x,{li1,li2,...},opts] is the covariant \
derivative of f[x] with respect to space-time variables x and with Lorentz \
indices li1, li2,... The default CovariantFieldDerivative is taken from \
mesonic ChPT and includes the external sources Vector and AxialVector, which \
by default are zero. The definitions of the defaults are in the file \
PhiStart.m and in the relevant configuration files and should be set \
according to the process under consideration. Also it may be neccesary to \
introduce several covariant derivatives (see CovariantNabla). \
CovariantFieldDerivative is recognized by ArgumentsSupply and partly by \
UNMSplit, that is, for UNMSplit to work, the 'extra' part apart from the \
derivative of CovariantFieldDerivative[f[x],x,{li1,li2,...},opts] should not \
have a meson-field dependence.";
SetOptions[CheckDB, Directory -> ToFileName[{$PHIDirectory}, "Storage"],
ForceSave -> False, NoSave -> False, Check -> False];
SetOptions[ILimit,
FunctionLimits -> {Log -> Log, LeutwylerJBar -> (LeutwylerJBar[
Sequence @@ Select[Expand /@ {##}, ((! MatchQ[#, _Rule | _List]) &)],
LeutwylerJBarEvaluation -> "subthreshold",
ExplicitLeutwylerSigma -> True]&)}
];
SetOptions[B0, BReduce->False,B0Unique->True,B0Real->False];
SetOptions[SetMandelstam, Dimension->{4,D,SpaceTimeDimensions}];
SetOptions[FeynRule, InitialFunction->PhiToFC];
(*Compapatibility with FCPartialD-operator notation*)
SetOptions[ExpandPartialD, PartialDRelations -> Union[
(*Original stuff*)(PartialDRelations /. Options[ExpandPartialD]),
(*Have ExpandPartialD use FieldDerivative for NM products*)
{
NM[a___, (FCPartialD|RightPartialD)[x_,LorentzIndex[mu_]], b___] :>
NM[a, FieldDerivative[NM[b], x, LorentzIndex[mu]]],
NM[a___, (FCPartialD|RightPartialD)[LorentzIndex[mu_]], b___] :>
NM[a, FieldDerivative[NM[b], z, LorentzIndex[mu]]] /;
(go = False; {b} /. ((QuantumField[__][y_?AtomQ] | _[___, QuantumField[__], ___][y_?AtomQ]) :> (go = True; z = y)); go),
NM[a___, LeftPartialD[x_,LorentzIndex[mu_]], b___] :>
NM[FieldDerivative[NM[a], x, LorentzIndex[mu]], b],
NM[a___, LeftPartialD[LorentzIndex[mu_]], b___] :>
NM[FieldDerivative[NM[a], z, LorentzIndex[mu]], b] /; (go = False; {a} /. ((QuantumField[__][y_?AtomQ] |
_[___, QuantumField[__], ___][y_?AtomQ]) :> (go = True; z = y)); go),
NM[a___, CovariantD[x_,LorentzIndex[mu_]], b___] :>
NM[a, CovariantFieldDerivative[NM[b], x, LorentzIndex[mu]]],
NM[a___, CovariantD[LorentzIndex[mu_]], b___] :>
NM[a, CovariantFieldDerivative[NM[b], z, LorentzIndex[mu]]] /; (go = False; {b} /. ((QuantumField[__][
y_?AtomQ] | _[___, QuantumField[__], ___][y_?AtomQ]) :> (go = True; z = y)); go),
NM[UMatrix[UIdentity, ___], (FCPartialD | RightPartialD | LeftPartialD)[__]] :>
0
}
]];
(* Not sure why this is necessary, but e.g. the calculation of the electron self energy in
QEDRadiativeCorrections.nb fails without. *)
(*TODO: Remove this *)
SetOptions[FourVector, FeynCalcInternal -> False];
SetOptions[MetricTensor, FeynCalcInternal -> False];
SetOptions[DiracSlash, FeynCalcInternal -> False];
(* A static hack. Not very pretty. Just to have ExpandPartialD work for
a few PHI examples (will have to be reevaluated when changing
$UMatrices if ExpandPartialD is to work for the new UMatrices) *)
DeclareNonCommutative /@ $UMatrices;
(* Have WFRenormalize work with Dirac matrices *)
DeclareNonCommutative[WFFactor1];
FeynCalc`Objects`FunctionalDerivative::usage =
"FunctionalDerivative is FunctionalD adapted for use with Phi";
FeynCalc`Objects`FunctionalDerivative[x_, o__] :=
Block[ {tr, nm, i, f},
i = 0;
f := (++i);
FunctionalD[ PhiToFC[x /. HoldPattern[NM[d__]] :> DOT[nm[f], d]] /. UTrace1 -> ((tr*#) &), o] //.
{DOT[nm[_], c__] :> NM[c], tr*r__ :> UTrace[Times[r]]}
];
$Abbreviations =
Union[$Abbreviations,
{ "Momentum" -> "",
"Pair" -> "",
"RenormalizationState" -> "",
"ParticleMass" -> "m",
"PseudoScalar" -> "PS",
"Scalar" -> "S",
"Vector" -> "V",
"AxialVector" -> "AV",
"Fermion" -> "F"}
];
(* Commented out 5/3-2000. I think its redundant and definitions on SUNIndex slow down everything. *)
(* Well - not quite so. Uncommented again 21/5-2001 *)
NM[a___, b : IsoVector[__][_], c___][SUNIndex[i_]] ^:=
NM[a, b[SUNIndex[i]], c];
NM[a___, b : IsoVector[__], c___][SUNIndex[i_]] ^:=
NM[a, b[SUNIndex[i]], c];
Times[a___, b : IsoVector[__][_], c___][SUNIndex[i_]] ^:=
Times[a, b[SUNIndex[i]], c];
Times[a___, b : IsoVector[__], c___][SUNIndex[i_]] ^:=
Times[a, b[SUNIndex[i]], c];
NM[a___, b : IsoVector[__][_], c___][UIndex[i_]] ^:=
NM[a, b[UIndex[i]], c];
NM[a___, b : IsoVector[__], c___][UIndex[i_]] ^:=
NM[a, b[UIndex[i]], c];
Times[a___, b : IsoVector[__][_], c___][UIndex[i_]] ^:=
Times[a, b[UIndex[i]], c];
Times[a___, b : IsoVector[__], c___][UIndex[i_]] ^:=
Times[a, b[UIndex[i]], c];
(*Added 3/11-2002 to contract also denominators. F.Orellana.
Unfortunately it slows down things, so we might want to add an option
to disable it...*)(*Moved here from Contract.m, 28/2-2003,
because Rolf commented it out there...*)
(* TODO ??? *)
Contract[x__, opts___Rule] :=
(Contract[x /. Times[a___, b : Pair[_, __]^-1, c___] :>
inv[(1/Times @@ Select[{a, b, c}, MatchQ[#, _^-1] &])](Times @@ Select[{a, b, c}, ! MatchQ[#, _^-1] &]), opts] /. inv -> ((1/#)&))/; !FreeQ[{x}, _Pair^-1];
(*Add PHI vertices to Amplitudes database*)
(*First make sure amplist has a value*)
(*Amplitude[];*)(*???*)
FeynCalc`Amplitude`Private`amplist={};
(*Get the PHI amps*)
Block[ {phiAmpList, dum, names, dir},
dir = ToFileName[{$PHIDirectory, "CouplingVectors"}];
names = StringReplace[StringReplace[#, dir -> ""], ".Gen" -> ""] & /@ FileNames["*.Gen", dir];
phiAmpList = (# :>
FAToFC[{CheckDB[dum, # <> ".Gen", ForceSave -> False, NoSave -> True].((#[[1]]) & /@ CheckDB[dum, # <> ".Mod", ForceSave -> False,
NoSave -> True])}][[1]]) & /@ names;
(*Modify amplist*)
FeynCalc`Amplitude`Private`amplist = Union[FeynCalc`Amplitude`Private`amplist, phiAmpList]
];
(* ************************************************************** *)
(* Recursive definition of multiple derivatives *)
(* Should usually not be altered *)
Options[CovariantFieldDerivative] = {
Explicit->True,
DiagonalToU->True,
SUNN->2,
UDimension->Automatic
};
CovariantFieldDerivative[aa_,x_,loris__LorentzIndex,lori1_LorentzIndex] :=
(
newfuncc[1] = CovariantFieldDerivative[aa,x,lori1];
Do[newfuncc[r+1] = CovariantFieldDerivative[
newfuncc[r],x,##]&@@Take[{loris},{-r}], {r,1,Length[{loris}]}];
newfuncc[Length[{loris}]+1]
);
(* ************************************************************** *)
(* (Re-)setting of options and $-variables *)
(*
Put definitions here you always want different from the
default settings. Model specific definitions should be
put in the relevant configuration file
*)
(* Which representation should be used for the
pion/meson matrix - the default is the exponential *)
$UExpansionCoefficients =
{1, 1, 1/2, 1/6, 1/24, 1/120, 1/720, 1/5040, 1/40320, 1/362880, 1/3628800};
(* ************************************************************** *)
(* ************ CHOOSE CONFIGURATION AND LAGRANGIANS ************ *)
(* ************************************************************** *)
(* Which configuration should be used? *)
(* Overridden is set before loading FeynCalc *)
If[ ValueQ[$Configuration] =!= True || $Configuration === None || $Configuration === "None",
$Configuration = "ChPT2";
(*standard SU(2) ChPT*)
(*"ChPTPhoton2";*)(*standard SU(2) ChPT with coupling to a photon source*)
(*"ChPT3";*) (*Standard SU(3) ChPT*)
(*"ChPTW3";*) (*Weak SU(3) ChPT*)
(*"BChPT2";*) (*Relativistic baryon SU(2) ChPT*)
(*"HBChPT2";*) (*Heavy baryon SU(2) ChPT*)
(*"ChPTEM2";*) (*Standard SU(2) ChPT with virtual photons - Meissner, Steininger*)
(*"ChPTVirtualPhotons2";*) (*Standard SU(2) ChPT with virtual photons - Urech, Knecht*)
(*"ChPTVirtualPhotons3";*) (*Standard SU(2) ChPT with virtual photons - Urech, Knecht*)
(*"QED";*) (*QED with one lepton*)
(*"QED2";*) (*QED with three leptons*)
]
(* Actual loading of configuration *)
If[ $PaletteConfiguration=!="None" && $PaletteConfiguration=!=None,
FCPrint[2,"Using ",$PaletteConfiguration," chosen from palette"];
$Configuration = Evaluate[$PaletteConfiguration]
];
FCPrint[2,"Loading configuration ",$Configuration];
tmp`olddir1 = tmp`olddir;
LoadConfiguration[$Configuration];
tmp`olddir = tmp`olddir1;
(* Which lagrangians should be loaded? *)
If[ ValueQ[$Lagrangians] =!= True || $Lagrangians === {},
$Lagrangians = {"ChPT2"[2],"ChPT2"[4]};
(*{"ChPTPhoton2"[2],"ChPTPhoton2"[4]};*)
(*{"ChPT3"[2],"ChPT3"[4]};*)
(*{"ChPTW3"[2],"ChPTW3"[4]};*)
(*{"BChPT2"[2]};*)
(*{"HBChPT2"[2]};*)
(*{"ChPTEM2"[2],"ChPTEM2"[4]};*)
(*{"ChPTVirtualPhotons2"[2],"ChPTVirtualPhotons2"[4]};*)
(*{"ChPTVirtualPhotons3"[2],"ChPTVirtualPhotons3"[4]};*)
(*{"QED"[1],"QED"[2]};*)
(*{"QED2"[1],"QED2"[2]};*)
]
(* Actual loading of lagrangians *)
FCPrint[2,"Loading lagrangians ", $Lagrangians];
LoadLagrangian/@$Lagrangians;
(* Setting of $VerticesSpecifications using all stored vertices
belonging to the chosen configuration *)
$VerticesSpecifications =
VerticesSpecifications[$Configuration, $FAParticlesInUse, $ParticleTypes];
(* ************************************************************** *)
(* ****** END OF CHOOSE CONFIGURATION AND LAGRANGIANS *********** *)
(* ************************************************************** *)
(* ************************************************************** *)
(* ******************* EXTRA CONFIGURATION ********************** *)
(* ************************************************************** *)
(* Source fields *)
(* Fields not needed should be set to 0 to speed up things *)
(* Fields *)
(*QuantumField[___,Particle[Scalar[0],___],___][_]:=0;*)
(*QuantumField[___,Particle[Scalar[1],___],___][_]:=0;*)
(*QuantumField[___,Particle[Scalar[2],___],___][_]:=0;*)
(*QuantumField[___,Particle[PseudoScalar[0],___],___][_]:=0;*)
(*QuantumField[___,Particle[Vector[0],___],___][_]:=0;*)
(*QuantumField[___,Particle[AxialVector[0],___],___][_]:=0;*)
(* Isovectors *)
(*IsoVector[
QuantumField[Particle[Scalar[0],___],___],___][_]:=0;*)
(*IsoVector[
QuantumField[Particle[Scalar[1],___],___],___][_]:=0;*)
(*IsoVector[
QuantumField[Particle[Scalar[2],___],___],___][_]:=0;*)
(*IsoVector[
QuantumField[Particle[PseudoScalar[0],___],___],___][_]:=0;*)
(*IsoVector[
QuantumField[Particle[Vector[0],___],___],___][_]:=0;*)
(*IsoVector[
QuantumField[Particle[AxialVector[0],___],___],___][_]:=0;*)
(* Isosinglets *)
(*QuantumField[___,Particle[Scalar[0],___],___,
SUNIndex[0],___][_]:=0;*)
(*QuantumField[___,Particle[Scalar[1],___],___,
SUNIndex[0],___][_]:=0;*)
(*QuantumField[___,Particle[Scalar[2],___],___,
SUNIndex[0],___][_]:=0;*)
(*QuantumField[___,Particle[PseudoScalar[0],___],___,
SUNIndex[0],___][_]:=0;*)
QuantumField[___,Particle[AxialVector[0],___],___, SUNIndex[0],___][_] :=
0;
QuantumField[___,Particle[Vector[0],___],___, SUNIndex[0],___][_] :=
0;
QuantumField[___,Particle[LeftComponent[0],___],___, SUNIndex[0],___][_] :=
0;
QuantumField[___,Particle[RightComponent[0],___],___, SUNIndex[0],___][_] :=
0;
(* The setting below expands the zero'th Scalar[0]
source around the quark mass. The Scalar[2] source is
then the perturbation. (- in ChPTW3 we use Scalar[1] for the
hamiltonian source) *)
IsoVector[QuantumField[Particle[Scalar[0],ar___RenormalizationState,
br___RenormalizationScheme,cr___ExpansionState, opts___Rule|opts___List]],opts1___][x_] :=
IsoVector[QuantumField[Particle[Scalar[2],ar,br,cr]],opts1][x];
QuantumField[Particle[Scalar[0],ar___RenormalizationState, br___RenormalizationScheme,cr___ExpansionState,
opts___Rule|opts___List], SUNIndex[0]][x_] :=
UQuarkMassMatrix[ar,br,cr,opts]+ QuantumField[Particle[Scalar[2],ar,br,cr, Sequence@@OptionsSelect[Particle,opts]],
SUNIndex[0]][x]*UIdentityMatrix[opts];
(* If you're working with the weak lagrangian; have a momentum carrying lagrangian or not *)
$Substitutions = DeleteCases[$Substitutions, UNablaHatDelta[_] :> _];
$Substitutions =
Append[$Substitutions, UNablaHatDelta[mu_] :>
(* The standard definition *)
(*-I*NM[SMM,
UGeneratorMatrixIsoDot[QuantumField[Particle[
LeftComponent[0]],{mu}]],
UGeneratorMatrix[SUNIndex[6]],
Adjoint[SMM]]+
I*NM[SMM,
UGeneratorMatrix[SUNIndex[6]],
UGeneratorMatrixIsoDot[QuantumField[Particle[
LeftComponent[0]],{mu}]],
Adjoint[SMM]]*)
(* Including a scalar 'source' with momentum *)
NM[SMM,NM[FDr[QuantumField[Particle[Scalar[1]]],{mu}], UGeneratorMatrix[SUNIndex[6]],Adjoint[SMM]]]
];
(* ************************************************************** *)
(* ***************** END OF EXTRA CONFIGURATION ***************** *)
(* ************************************************************** *)
(* Add the palettes to the palette menu of Mathematica
(Requires a restart of the frontend) and fix red brackets *)
(* TODO: Check *)
If[ AtomQ[$FrontEnd]=!=True,
SetOptions[$FrontEnd, PalettePath -> Append[Select[Options[$FrontEnd, PalettePath][[1, -1]],
((If[ StringQ[#], !StringMatchQ[#, "*FeynCalc*Phi*"],
FreeQ[#, "FeynCalc"] && FreeQ[#, "Phi"]
] === True)&)],
ToFileName[{$PHIDirectory}, "Palettes"]]];
(*Under Mathematica 4, the default highlighting unmatched brackets
highlights all right brackets generated by PHI, so we disable it.
This is the default: {"UnmatchedBracketStyle" -> "UnmatchedBracket"}*)
SetOptions[$FrontEnd, AutoStyleOptions -> {"UnmatchedBracketStyle" -> None}];
];
End[]