diff --git a/README.md b/README.md index be7bf07d3..39239a1a2 100644 --- a/README.md +++ b/README.md @@ -392,7 +392,7 @@ NLP f32/f16 W32A16 - Incoming + f16 N/A diff --git a/training/iluvatar/t5_small-pytorch/README.md b/training/iluvatar/t5_small-pytorch/README.md index 53d90ee58..a82bd8531 100644 --- a/training/iluvatar/t5_small-pytorch/README.md +++ b/training/iluvatar/t5_small-pytorch/README.md @@ -50,9 +50,3 @@ | BI-V100单机单卡(1x1) | fp32 | / | / | / | / | / | 41.2064 | 18.9082 | 29.1922 | 38.4298 | 27.378 /32.0 | | BI-V100两机8卡(2x8) | fp32 | | | | | | | | | | | -注意: T5模型MFU数值较低, 为11.8% -1x8训练的MFU计算过程如下: -`MFU = 400.26068691305795 * 1024 * (60 * 10^6) * 6 / (156 * 1000^4) / 8 = 11.8%` - -其中, 1024为seq_len, 60 millions为参数量, (156 * 1000^4)为A100 tf32算力 - diff --git a/training/run_benchmarks/config/test_conf.py b/training/run_benchmarks/config/test_conf.py index e04f10854..633f0c78d 100644 --- a/training/run_benchmarks/config/test_conf.py +++ b/training/run_benchmarks/config/test_conf.py @@ -130,7 +130,6 @@ # "transformer:pytorch:R300:1:8:1": "/raid/dataset/transformer/wmt14_en_de_joined_dict", # "bigtransfer:pytorch:R300:1:8:1": "/raid/dataset/ImageNet_1k_2012/", # "efficientnet:pytorch:R300:1:8:1": "/raid/dataset/ImageNet_1k_2012/", - # iluvatar cases # "bigtransfer:pytorch:BI-V100:1:8:1": "/raid/dataset/ImageNet_1k_2012/",