-
-
Notifications
You must be signed in to change notification settings - Fork 332
/
model.jl
136 lines (104 loc) · 5.55 KB
/
model.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
# # Language detection (character-level)
# In this example, we create a character-level language detection model. Given a sentence (text), each character is fed into an [LSTM](https://d2l.ai/chapter_recurrent-modern/lstm.html) and then the final output determines in which language the text is written.
# This example illustrates the preprocessing of text data before feeding it into the model as well as the use of a scanner and an encoder for a language model.
# If you need more information about how LSTM work and related technical concepts,
# check out the following resources:
# * [The Unreasonable Effectiveness of Recurrent Neural Networks](http://karpathy.github.io/2015/05/21/rnn-effectiveness/)
# * [Understanding LSTM Networks](https://colah.github.io/posts/2015-08-Understanding-LSTMs/)
# * [Illustrated Guide to Recurrent Neural Networks: Understanding the Intuition](https://www.youtube.com/watch?v=LHXXI4-IEns)
# To run this example, we need the following packages:
using Flux
using Flux: onehot, onecold, onehotbatch, logitcrossentropy, reset!
using Statistics: mean
using Random
using Unicode
# We set default values for hyperparameters:
Base.@kwdef mutable struct Args
lr::Float64 = 1e-3 ## Learning rate
N::Int = 15 ## Number of perceptrons in hidden layer
epochs::Int = 3 ## Number of epochs
test_len::Int = 100 ## length of test data
langs_len::Int = 0 ## Number of different languages in Corpora
alphabet_len::Int = 0 ## Total number of characters possible, in corpora
throttle::Int = 10 ## throttle timeout
end
# ## Load dataset
# Before running this example, you need to obtain the data by running the script `scrape.jl`.
# It downloads articles from Wikipedia in five different languages (English, Italian, French, Spanish, and Danish).
# Also, it creates the folder `corpus` that contains five text files (one per language).
# The function `get_processed_data` reads the text files and creates the data set for training the model.
# First, it loads the raw text into a dictionary.
# Then, it defines the alphabet and the characters that will be represented as unknown.
# Finally, it one-hot encodes the text and its corresponding labels (the language in which is written)
# before splitting the data into train and test data sets.
function get_processed_data(args)
corpora = Dict()
for file in readdir("corpus")
lang = Symbol(match(r"(.*)\.txt", file).captures[1])
corpus = split(String(read("corpus/$file")), ".")
corpus = strip.(Unicode.normalize.(corpus, casefold=true, stripmark=true))
corpus = filter(!isempty, corpus)
corpora[lang] = corpus
end
langs = collect(keys(corpora))
args.langs_len = length(langs)
alphabet = ['a':'z'; '0':'9'; ' '; '\n'; '_']
args.alphabet_len = length(alphabet)
## See which chars will be represented as "unknown"
unk_chars = unique(filter(∉(alphabet), join(vcat(values(corpora)...))))
dataset = [(onehotbatch(s, alphabet, '_'), onehot(l, langs)) for l in langs for s in corpora[l]] |> shuffle
train, test = dataset[1:end-args.test_len], dataset[end-args.test_len+1:end]
testX, testY = first.(test), last.(test)
return train, testX, testY, langs
end
# ## Create the model
# The model consists of an **encoder** and a **classifier**. The **encoder** reads the sentence one character
# at a time using one [dense](https://fluxml.ai/Flux.jl/stable/models/layers/#Flux.Dense)
# and one [LSTM](https://fluxml.ai/Flux.jl/stable/models/layers/#Flux.LSTM) layers, and encodes it through
# the state of its last character.
# The **classifier** inputs this encoding and outputs the predicted language for the sentence.
# The model is defined as a [Custom model](https://fluxml.ai/Flux.jl/stable/models/advanced/)
struct EncoderClassifier{E, C}
encoder::E
classifier::C
end
function build_model(args)
encoder = Chain(Dense(args.alphabet_len, args.N, σ), LSTM(args.N, args.N))
classifier = Dense(args.N, args.langs_len)
return EncoderClassifier(encoder, classifier)
end
# Notice that we use the function [reset!](https://fluxml.ai/Flux.jl/stable/models/layers/#Flux.reset!)
# when computing the model's prediction to reset the hidden state of an LSTM layer back to its original value.
function (m::EncoderClassifier)(x)
state = m.encoder(x)[:, end]
Flux.reset!(m.encoder)
m.classifier(state)
end
Flux.@functor EncoderClassifier
# ## Train the model
# The function `train` executes one training step for the model
# using Flux’s [train!](https://fluxml.ai/Flux.jl/stable/training/training/#Flux.Optimise.train!).
# It uses the loss function
# [logitcrossentropy](https://fluxml.ai/Flux.jl/stable/models/losses/#Flux.Losses.logitcrossentropy)
# and the [ADAM](https://fluxml.ai/Flux.jl/stable/training/optimisers/#Flux.Optimise.ADAM) optimizer.
function train(; kws...)
## Initialize Hyperparameters
args = Args(; kws...)
## Load Data
train_data, test_X, test_Y, langs = get_processed_data(args)
@info("Constructing Model...")
model = build_model(args)
loss(model, x, y) = logitcrossentropy(model(x), y)
opt = Flux.setup(ADAM(args.lr), model)
@info("Training...")
for epoch in 1:args.epochs
Flux.train!(loss, model, train_data, opt)
test_loss = mean(loss(model, x, y) for (x, y) in zip(test_X, test_Y))
@show epoch, test_loss
end
test_predictions = [onecold(model(x), langs) for x in test_X]
accuracy = mean(test_predictions .== [onecold(y, langs) for y in test_Y])
@show accuracy
end
cd(@__DIR__)
train()