Docker 属于 Linux 容器的一种封装,提供简单易用的容器使用接口。
它是目前最流行的 Linux 容器解决方案。
Docker 将应用程序与该程序的依赖,打包在一个文件里面。运行这个文件,就会生成一个虚拟容器。程序在这个虚拟容器里运行,就好像在真实的物理机上运行一样。有了 Docker,就不用担心环境问题。
总体来说,Docker 的接口相当简单,用户可以方便地创建和使用容器,把自己的应用放入容器。容器还可以进行版本管理、复制、分享、修改,就像管理普通的代码一样。
- 更高效的利用系统资源 - 由于容器不需要进行硬件虚拟以及运行完整操作系统等额外开销,
Docker
对系统资源的利用率更高。无论是应用执行速度、内存损耗或者文件存储速度,都要比传统虚拟机技术更高效。因此,相比虚拟机技术,一个相同配置的主机,往往可以运行更多数量的应用。 - 更快速的启动时间 - 传统的虚拟机技术启动应用服务往往需要数分钟,而
Docker
容器应用,由于直接运行于宿主内核,无需启动完整的操作系统,因此可以做到秒级、甚至毫秒级的启动时间。大大的节约了开发、测试、部署的时间。 - 一致的运行环境 - 开发过程中一个常见的问题是环境一致性问题。由于开发环境、测试环境、生产环境不一致,导致有些 bug 并未在开发过程中被发现。而
Docker
的镜像提供了除内核外完整的运行时环境,确保了应用运行环境一致性,从而不会再出现 「这段代码在我机器上没问题啊」 这类问题。 - 持续交付和部署 - 对开发和运维(DevOps)人员来说,最希望的就是一次创建或配置,可以在任意地方正常运行。使用
Docker
可以通过定制应用镜像来实现持续集成、持续交付、部署。开发人员可以通过 Dockerfile 来进行镜像构建,并结合 持续集成(Continuous Integration) 系统进行集成测试,而运维人员则可以直接在生产环境中快速部署该镜像,甚至结合 持续部署(Continuous Delivery/Deployment) 系统进行自动部署。而且使用Dockerfile
使镜像构建透明化,不仅仅开发团队可以理解应用运行环境,也方便运维团队理解应用运行所需条件,帮助更好的生产环境中部署该镜像。 - 更轻松的迁移 - 由于
Docker
确保了执行环境的一致性,使得应用的迁移更加容易。Docker
可以在很多平台上运行,无论是物理机、虚拟机、公有云、私有云,甚至是笔记本,其运行结果是一致的。因此用户可以很轻易的将在一个平台上运行的应用,迁移到另一个平台上,而不用担心运行环境的变化导致应用无法正常运行的情况。 - 更轻松的维护和扩展 -
Docker
使用的分层存储以及镜像的技术,使得应用重复部分的复用更为容易,也使得应用的维护更新更加简单,基于基础镜像进一步扩展镜像也变得非常简单。此外,Docker
团队同各个开源项目团队一起维护了一大批高质量的 官方镜像,既可以直接在生产环境使用,又可以作为基础进一步定制,大大的降低了应用服务的镜像制作成本。
Docker 提供了被称为容器的松散隔离环境,在环境中可以打包和运行应用程序。隔离和安全性允许您在给定主机上同时运行多个容器。容器是轻量级的,因为它们不需要管理程序的额外负载,而是直接在主机的内核中运行。这意味着您可以在给定的硬件组合上运行更多容器,而不是使用虚拟机。你甚至可以在实际上是虚拟机的主机中运行 Docker 容器!
Docker 的主要用途,目前有三大类。
- **提供一次性的环境。**比如,本地测试他人的软件、持续集成的时候提供单元测试和构建的环境。
- **提供弹性的云服务。**因为 Docker 容器可以随开随关,很适合动态扩容和缩容。
- **组建微服务架构。**通过多个容器,一台机器可以跑多个服务,因此在本机就可以模拟出微服务架构。
Docker 把应用程序及其依赖,打包在镜像(Image)文件里面。
我们都知道,操作系统分为内核和用户空间。对于 Linux 而言,内核启动后,会挂载 root 文件系统为其提供用户空间支持。而 Docker 镜像(Image),就相当于是一个 root 文件系统。比如官方镜像 ubuntu:18.04 就包含了完整的一套 Ubuntu 18.04 最小系统的 root 文件系统。
Docker 镜像是一个特殊的文件系统,除了提供容器运行时所需的程序、库、资源、配置等文件外,还包含了一些为运行时准备的一些配置参数(如匿名卷、环境变量、用户等)。镜像不包含任何动态数据,其内容在构建之后也不会被改变。
分层存储
因为镜像包含操作系统完整的 root 文件系统,其体积往往是庞大的,因此在 Docker 设计时,就充分利用 Union FS 的技术,将其设计为分层存储的架构。所以严格来说,镜像并非是像一个 ISO 那样的打包文件,镜像只是一个虚拟的概念,其实际体现并非由一个文件组成,而是由一组文件系统组成,或者说,由多层文件系统联合组成。
镜像构建时,会一层层构建,前一层是后一层的基础。每一层构建完就不会再发生改变,后一层上的任何改变只发生在自己这一层。比如,删除前一层文件的操作,实际不是真的删除前一层的文件,而是仅在当前层标记为该文件已删除。在最终容器运行的时候,虽然不会看到这个文件,但是实际上该文件会一直跟随镜像。因此,在构建镜像的时候,需要额外小心,每一层尽量只包含该层需要添加的东西,任何额外的东西应该在该层构建结束前清理掉。
分层存储的特征还使得镜像的复用、定制变的更为容易。甚至可以用之前构建好的镜像作为基础层,然后进一步添加新的层,以定制自己所需的内容,构建新的镜像。
镜像(Image
)和容器(Container
)的关系,就像是面向对象程序设计中的 类
和 实例
一样,镜像是静态的定义,容器是镜像运行时的实体。容器可以被创建、启动、停止、删除、暂停等。
容器的实质是进程,但与直接在宿主执行的进程不同,容器进程运行于属于自己的独立的 命名空间。因此容器可以拥有自己的 root
文件系统、自己的网络配置、自己的进程空间,甚至自己的用户 ID 空间。容器内的进程是运行在一个隔离的环境里,使用起来,就好像是在一个独立于宿主的系统下操作一样。这种特性使得容器封装的应用比直接在宿主运行更加安全。也因为这种隔离的特性,很多人初学 Docker 时常常会混淆容器和虚拟机。
前面讲过镜像使用的是分层存储,容器也是如此。每一个容器运行时,是以镜像为基础层,在其上创建一个当前容器的存储层,我们可以称这个为容器运行时读写而准备的存储层为容器存储层。
容器存储层的生存周期和容器一样,容器消亡时,容器存储层也随之消亡。因此,任何保存于容器存储层的信息都会随容器删除而丢失。
按照 Docker 最佳实践的要求,容器不应该向其存储层内写入任何数据,容器存储层要保持无状态化。所有的文件写入操作,都应该使用 数据卷(Volume)、或者绑定宿主目录,在这些位置的读写会跳过容器存储层,直接对宿主(或网络存储)发生读写,其性能和稳定性更高。
数据卷的生存周期独立于容器,容器消亡,数据卷不会消亡。因此,使用数据卷后,容器删除或者重新运行之后,数据却不会丢失。
镜像构建完成后,可以很容易的在当前宿主机上运行,但是,如果需要在其它服务器上使用这个镜像,我们就需要一个集中的存储、分发镜像的服务,Docker Registry 就是这样的服务。
一个 Docker Registry 中可以包含多个仓库(Repository
);每个仓库可以包含多个标签(Tag
);每个标签对应一个镜像。
通常,一个仓库会包含同一个软件不同版本的镜像,而标签就常用于对应该软件的各个版本。我们可以通过 <仓库名>:<标签>
的格式来指定具体是这个软件哪个版本的镜像。如果不给出标签,将以 latest
作为默认标签。
以 Ubuntu 镜像 为例,ubuntu
是仓库的名字,其内包含有不同的版本标签,如,16.04
, 18.04
。我们可以通过 ubuntu:14.04
,或者 ubuntu:18.04
来具体指定所需哪个版本的镜像。如果忽略了标签,比如 ubuntu
,那将视为 ubuntu:latest
。
仓库名经常以 两段式路径 形式出现,比如 jwilder/nginx-proxy
,前者往往意味着 Docker Registry 多用户环境下的用户名,后者则往往是对应的软件名。但这并非绝对,取决于所使用的具体 Docker Registry 的软件或服务。
奥秘就在于 Linux 操作系统内核之中,为资源隔离提供了三种技术:namespace、cgroup、chroot,虽然这三种技术的初衷并不是为了实现容器,但它们三个结合在一起就会发生奇妙的“化学反应”。
-
namespace 是 2002 年从 Linux 2.4.19 开始出现的,和编程语言里的 namespace 有点类似,它可以创建出独立的文件系统、主机名、进程号、网络等资源空间,相当于给进程盖了一间小板房,这样就实现了系统全局资源和进程局部资源的隔离。
-
cgroup 是 2008 年从 Linux 2.6.24 开始出现的,它的全称是 Linux Control Group,用来实现对进程的 CPU、内存等资源的优先级和配额限制,相当于给进程的小板房加了一个天花板。
-
chroot 的历史则要比前面的 namespace、cgroup 要古老得多,早在 1979 年的 UNIX V7 就已经出现了,它可以更改进程的根目录,也就是限制访问文件系统,相当于给进程的小板房铺上了地砖。
// 从远端仓库拉取镜像
docker pull
docker pull alpine:3.15
docker pull ubuntu:jammy
// 列出当前本地已有的镜像
docker images
// 删除不再使用的镜像
docker rmi
docker rmi redis
docker rmi d4c
// 从镜像启动容器,即运行容器化的应用
// 常用参数
// -it:运行完成之后开启一个交互式的Shell
// -d: 让容器在后台运行
// --name: 为容器起一个名字
// --rm: 不保存容器,运行完毕自动清除
docker run
docker run -d nginx:alpine # 后台运行Nginx
docker run -d --name red_srv redis # 后台运行Redis
docker run -it --name ubuntu 2e6 sh # 使用IMAGE ID,登录Ubuntu18.04
// 列出正在运行的容器
// 常用参数:
// -a: 列出所有容器,包括已经停止的容器
docker ps
// 在容器内执行另一个程序
docker exec
// 强制停止容器
docker stop
// 再次启动已经停止的容器
docker start
// 彻底删除容器
docker rm
// 可以在容器和主机之间互相拷贝文件,适合简单的数据交换
docker cp
docker cp a.txt 062:/tmp
docker cp 062:/tmp/a.txt ./b.txt
// 共享主机上的文件
// 是以 Redis 为例,启动容器,使用 -v 参数把本机的“/tmp”目录挂载到容器里的“/tmp”目录,也就是说让容器共享宿主机的“/tmp”目录
docker run -d --rm -v /tmp:/tmp redis
Docker 提供了三种网络模式,分别是 null、host 和 bridge。
最简单的模式,也就是没有网络,但允许其他的网络插件来自定义网络连接。
意思是直接使用宿主机网络,相当于去掉了容器的网络隔离(其他隔离依然保留),所有的容器会共享宿主机的 IP 地址和网卡。这种模式没有中间层,自然通信效率高,但缺少了隔离,运行太多的容器也容易导致端口冲突。
host 模式需要在 docker run 时使用 --net=host 参数,下面就用这个参数启动 Nginx:
docker run -d --rm --net=host nginx:alpine
也就是桥接模式,它有点类似现实世界里的交换机、路由器,只不过是由软件虚拟出来的,容器和宿主机再通过虚拟网卡接入这个网桥(图中的 docker0),那么它们之间也就可以正常的收发网络数据包了。不过和 host 模式相比,bridge 模式多了虚拟网桥和网卡,通信效率会低一些。
下面我们启动两个容器 Nginx 和 Redis,就像刚才说的,没有特殊指定就会使用 bridge 模式:
docker run -d --rm nginx:alpine # 默认使用桥接模式
docker run -d --rm redis # 默认使用桥接模式
// 查看容器的 ip 地址
docker inspect xxx |grep IPAddress