forked from carla-simulator/reinforcement-learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_RL.py
89 lines (77 loc) · 2.89 KB
/
run_RL.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
#!/usr/bin/env python3
# Copyright (c) 2017 Computer Vision Center (CVC) at the Universitat Autonoma de
# Barcelona (UAB).
#
# This work is licensed under the terms of the MIT license.
# For a copy, see <https://opensource.org/licenses/MIT>.
import argparse
import logging
from carla.driving_benchmark import run_driving_benchmark
from carla.driving_benchmark.experiment_suites import CoRL2017, BasicExperimentSuite
from agent.runnable_model import A3CAgent
if __name__ == '__main__':
argparser = argparse.ArgumentParser(description=__doc__)
argparser.add_argument(
'-v', '--verbose',
action='store_true',
dest='verbose',
help='print some extra status information')
argparser.add_argument(
'-db', '--debug',
action='store_true',
dest='debug',
help='print debug information')
argparser.add_argument(
'--host',
metavar='H',
default='localhost',
help='IP of the host server (default: localhost)')
argparser.add_argument(
'-p', '--port',
metavar='P',
default=2000,
type=int,
help='TCP port to listen to (default: 2000)')
argparser.add_argument(
'-c', '--city-name',
metavar='C',
default='Town01',
help='The town that is going to be used on benchmark'
+ '(needs to match active town in server, options: Town01 or Town02)')
argparser.add_argument(
'-n', '--log_name',
metavar='T',
default='test',
help='The name of the log file to be created by the benchmark'
)
argparser.add_argument(
'--corl-2017',
action='store_true',
help='If you want to benchmark the corl-2017 instead of the Basic one'
)
argparser.add_argument(
'--continue-experiment',
action='store_true',
help='If you want to continue the experiment with the same name'
)
args = argparser.parse_args()
if args.debug:
log_level = logging.DEBUG
elif args.verbose:
log_level = logging.INFO
else:
log_level = logging.WARNING
logging.basicConfig(format='%(levelname)s: %(message)s', level=log_level)
logging.info('listening to server %s:%s', args.host, args.port)
agent = A3CAgent(args.city_name, args_file='agent/trained_model/args.txt',
model_file='agent/trained_model/9600000.h5', n_actions=9, frameskip=1)
# We instantiate an experiment suite. Basically a set of experiments
# that are going to be evaluated on this benchmark.
if args.corl_2017:
experiment_suite = CoRL2017(args.city_name)
else:
experiment_suite = BasicExperimentSuite(args.city_name)
# Now actually run the agent_benchmark
run_driving_benchmark(agent, experiment_suite, args.city_name,
args.log_name, args.continue_experiment,
args.host, args.port)