-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
235 lines (185 loc) · 10.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import argparse
import time
import tqdm
from torch.optim.lr_scheduler import CosineAnnealingLR
from torch.utils.data import DataLoader
from datasets import *
from loss_function import MyLoss
from models import *
from models_noshare import Guider_noshare
from tools import SingleSummaryWriter, mutils, saver
from tools.metric_utils import AverageMeters, write_loss
from utils import *
parser = argparse.ArgumentParser()
parser.add_argument('--comment', '-m', default='edge_detection')
parser.add_argument('--epoch', type=int, default=0, help='epoch to start training from')
parser.add_argument('--n_epochs', type=int, default=30, help='number of epochs of training')
parser.add_argument('--batch_size', type=int, default=1, help='size of the batches')
parser.add_argument('--iter_size', type=int, default=16, help='size of the iterations')
parser.add_argument('--lr', type=float, default=0.001, help='adam: learning rate')
parser.add_argument('--n_cpu', type=int, default=20, help='number of cpu threads to use during batch generation')
parser.add_argument('--sample_interval', type=int, default=500, help='interval between sampling images from generators')
parser.add_argument('--checkpoint_interval', type=int, default=1, help='interval between saving model checkpoints')
parser.add_argument("--log_interval", type=int, default=500, help="interval for logging")
parser.add_argument('--debug', action='store_true')
parser.add_argument('--resume', type=str, default=None)
parser.add_argument('--log_path', type=str, default='logs/')
parser.add_argument('--saved_path', type=str, default='logs/')
# ----------
# Training
# ----------
def main():
global global_step
for epoch in range(args.epoch, args.n_epochs):
if epoch >= 2:
state_st = G_network.state_dict()
state_t = G_network_teacher.state_dict()
for k, v in state_t.items():
state_t[k] = (state_t[k] + state_st[k]) * 0.5
G_network_teacher.load_state_dict(state_t)
state_st_noshare = G_network_noshare.state_dict()
state_t_noshare = G_network_teacher_noshare.state_dict()
for k, v in state_t_noshare.items():
state_t_noshare[k] = (state_t_noshare[k] + state_st_noshare[k]) * 0.5
G_network_teacher_noshare.load_state_dict(state_t_noshare)
elif epoch == 1:
G_network_teacher.load_state_dict(G_network.state_dict())
G_network_teacher_noshare.load_state_dict(G_network_noshare.state_dict())
dis_weight = 0.8 * float(epoch) / float(args.n_epochs)
loss_meter = AverageMeters()
loss_noshare_meter = AverageMeters()
bar = tqdm.tqdm(dataloader, disable=True)
saver.base_url = os.path.join(args.saved_path, 'results')
for i, batch in enumerate(bar):
# if args.debug and i > 2000:
# break
# Set model input
img = batch['img'].float().to(device)
edge_gt = batch['edge'].float().to(device)
if epoch >= 1:
with torch.no_grad():
h, w = img.shape[2], img.shape[3]
mask_features_teacher = G_network_teacher(img)[-1]
mask_features_noshare = G_network_teacher_noshare(img)[-1]
uncertainty = torch.abs(F.sigmoid(mask_features_teacher) - 0.5).detach()
uncertainty_noshare = torch.abs(F.sigmoid(mask_features_noshare) - 0.5).detach()
weight = uncertainty / (uncertainty + uncertainty_noshare)
res = F.sigmoid(mask_features_teacher * weight + mask_features_noshare * (1 - weight))
edge_gt_soft = edge_gt * (1 - dis_weight) + res * dis_weight
else:
edge_gt_soft = edge_gt
if random.random() < dis_weight:
img_smoothed = bilateralFilter(img, 5)
img = img_smoothed if random.random() > 0.5 else img + 2 * (img - img_smoothed)
edge_feats = G_network(img)
edge_preds = [torch.sigmoid(r) for r in edge_feats]
# Identity loss
loss, loss_items = criterion(edge_preds, edge_gt, edge_gt_soft)
if torch.isnan(loss):
saver.save_image(img, './nan_im')
saver.save_image(edge_gt, './nan_edge_gt')
exit(0)
loss = loss / args.iter_size
loss.backward()
edge_feats_noshare = G_network_noshare(img)
edge_preds_noshare = [torch.sigmoid(r) for r in edge_feats_noshare]
# Identity loss
loss_noshare, loss_noshare_items = criterion(edge_preds_noshare, edge_gt, edge_gt_soft)
if torch.isnan(loss_noshare):
saver.save_image(img, './nan_im')
saver.save_image(edge_gt, './nan_edge_gt')
exit(0)
loss_noshare = loss_noshare / args.iter_size
loss_noshare.backward()
if (i + 1) % args.iter_size == 0:
optimizer_G.step()
optimizer_G.zero_grad()
optimizer_G_noshare.step()
optimizer_G_noshare.zero_grad()
loss_meter.update(loss_items)
loss_noshare_meter.update(loss_noshare_items)
if global_step % args.log_interval == 0:
print('\r[Epoch %d/%d, Iter: %d/%d]: %s, %s' % (epoch, args.n_epochs, i, len(bar), loss_meter, loss_noshare_meter), end="")
write_loss(writer, 'train', loss_meter, global_step)
if global_step % args.sample_interval == 0:
with torch.no_grad():
show = torch.cat([*edge_preds, edge_gt], dim=0).repeat(1, 3, 1, 1)
show = torch.cat([show, img], dim=0)
saver.save_image(show, '%09d' % global_step, nrow=5)
global_step += 1
del loss, loss_noshare, img, edge_preds, edge_preds_noshare, edge_feats, edge_feats_noshare
loss_meter.reset()
loss_noshare_meter.reset()
if args.checkpoint_interval != -1 and epoch % args.checkpoint_interval == 0:
# Save model checkpoints
save_checkpoint({'G': G_network, 'G_teacher': G_network_teacher, 'G_noshare': G_network_noshare, 'G_teacher_noshare': G_network_teacher_noshare},
{'optimizer': optimizer_G, 'optimizer_noshare': optimizer_G_noshare},
{'scheduler': scheduler_cosine, 'scheduler_warmup': scheduler_warmup, 'scheduler_noshare': scheduler_cosine_noshare, 'scheduler_warmup_noshare': scheduler_warmup_noshare},
'ckt', epoch, os.path.join(args.saved_path, 'weights'))
scheduler_warmup.step()
scheduler_warmup_noshare.step()
if __name__ == '__main__':
args = parser.parse_args()
# setting random seed
seed = int(time.time())
random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
device = 'cuda'
# Losses
criterion = MyLoss().to(device)
# Initialize student and teacher
G_network = Guider_stu().to(device)
G_network_teacher = Guider_stu().to(device)
G_network_noshare = Guider_noshare().to(device)
G_network_teacher_noshare = Guider_noshare().to(device)
for p in G_network_teacher.parameters():
p.requires_grad = False
for p in G_network_teacher_noshare.parameters():
p.requires_grad = False
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
# Image transformations
transforms_ = [transforms.ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5, hue=0.5),
transforms.RandomGrayscale(p=0.2),
transforms.ToTensor(), normalize]
# Training data loader
dataloader = DataLoader(ImageDataset("/home/fyb", transforms_=transforms_, unaligned=True),
batch_size=args.batch_size, shuffle=True, num_workers=args.n_cpu)
# Testing data loader
val_dataloader = DataLoader(ImageDataset("/home/fyb", transforms_=transforms_, unaligned=True, mode='test'),
batch_size=1, shuffle=False, num_workers=1)
# Defining optimizer and schedulers
optimizer_G = torch.optim.AdamW(filter(lambda p: p.requires_grad, G_network.parameters()),
lr=args.lr, betas=(0.9, 0.9), weight_decay=1e-3)
scheduler_cosine = CosineAnnealingLR(optimizer_G, args.n_epochs)
scheduler_warmup = GradualWarmupScheduler(
optimizer_G, multiplier=8, total_epoch=4, after_scheduler=scheduler_cosine)
optimizer_G_noshare = torch.optim.AdamW(filter(lambda p: p.requires_grad, G_network_noshare.parameters()),
lr=args.lr, betas=(0.9, 0.9), weight_decay=1e-3)
scheduler_cosine_noshare = CosineAnnealingLR(optimizer_G_noshare, args.n_epochs)
scheduler_warmup_noshare = GradualWarmupScheduler(
optimizer_G_noshare, multiplier=8, total_epoch=4, after_scheduler=scheduler_cosine_noshare)
# Defining logging dirs
timestamp = mutils.get_formatted_time()
args.saved_path = args.saved_path + f'/{args.comment}/{timestamp}'
args.log_path = args.log_path + f'/{args.comment}/{timestamp}/tensorboard/'
os.makedirs(args.log_path, exist_ok=True)
os.makedirs(args.saved_path, exist_ok=True)
writer = SingleSummaryWriter(args.log_path)
global_step = 0
if args.resume is not None:
state_dict = torch.load(args.resume)
args.epoch = state_dict['epoch'] + 1
G_network.load_state_dict(state_dict['G'])
G_network_teacher.load_state_dict(state_dict['G_teacher'])
G_network_noshare.load_state_dict(state_dict['G_noshare'])
G_network_teacher_noshare.load_state_dict(state_dict['G_teacher_noshare'])
optimizer_G.load_state_dict(state_dict['optimizer'])
optimizer_G_noshare.load_state_dict(state_dict['optimizer_noshare'])
scheduler_cosine.load_state_dict(state_dict['scheduler'])
scheduler_warmup.load_state_dict(state_dict['scheduler_warmup'])
scheduler_cosine_noshare.load_state_dict(state_dict['scheduler_noshare'])
scheduler_warmup_noshare.load_state_dict(state_dict['scheduler_warmup_noshare'])
main()