-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfashion_mnist_model.py
66 lines (55 loc) · 2.01 KB
/
fashion_mnist_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import torch
from torch import nn, optim
from torchvision import datasets, transforms
import helper
# Define a transform to normalize the data
transform = transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))])
# Download and load the training data
trainset = datasets.FashionMNIST('~/.pytorch/F_MNIST_data/', download=True, train=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True)
# Download and load the test data
testset = datasets.FashionMNIST('~/.pytorch/F_MNIST_data/', download=True, train=False, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=64, shuffle=True)
# Hyperparameters
epochs = 5
lr = 0.005
n_input = 784
n_hidden_1 = 256
n_hidden_2 = 128
n_hidden_3 = 64
n_output = 10
# Model definition
model = nn.Sequential(nn.Linear(n_input, n_hidden_1),
nn.ReLU(),
nn.Linear(n_hidden_1, n_hidden_2),
nn.ReLU(),
nn.Linear(n_hidden_2, n_hidden_3),
nn.ReLU(),
nn.Linear(n_hidden_3, n_output),
nn.LogSoftmax(dim=1))
# Loss and optimizer
criterion = nn.NLLLoss()
optimizer = optim.Adam(model.parameters(), lr=lr)
# Training loop
for i in range(epochs):
running_loss = 0
for images, labels in trainloader:
images = images.view(images.shape[0], -1)
optimizer.zero_grad()
logps = model(images)
loss = criterion(logps, labels)
loss.backward()
optimizer.step()
running_loss += loss
else:
print(f"Training loss at step {i}: {running_loss / len(trainloader)}")
dataiter = iter(testloader)
images, labels = dataiter.next()
img = images[0]
# Convert 2D image to 1D vector
img = img.resize_(1, 784)
# Calculate probabilities
ps = torch.exp(model(img))
# Plot the image and probabilities
helper.view_classify(img.resize_(1, 28, 28), ps, version='Fashion')