forked from facebookresearch/PointInfinity
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
265 lines (217 loc) · 9.86 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# MCC: https://github.com/facebookresearch/MCC
# Point-E: https://github.com/openai/point-e
# RIN: https://arxiv.org/pdf/2212.11972
# This code includes the implementation of our default two-stream model.
# Our default two-stream implementation is based on RIN and MCC,
# Other backbone in the two-stream family such as PerceiverIO will also work.
# --------------------------------------------------------
import torch
import torch.nn as nn
import torch.nn.functional as F
from functools import partial
from timm.models.vision_transformer import PatchEmbed, Block
from utils import get_2d_sincos_pos_embed, preprocess_img
from modules import Denoiser_backbone
class XYZPosEmbed(nn.Module):
"""
A Masked Autoencoder with VisionTransformer backbone.
"""
def __init__(self, embed_dim, num_heads):
super().__init__()
self.embed_dim = embed_dim
self.two_d_pos_embed = nn.Parameter(
torch.zeros(1, 64 + 1, embed_dim), requires_grad=False)
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.win_size = 8
self.pos_embed = nn.Linear(3, embed_dim)
self.blocks = nn.ModuleList([
Block(embed_dim, num_heads=num_heads, mlp_ratio=2.0, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6))
for _ in range(1)
])
self.invalid_xyz_token = nn.Parameter(torch.zeros(embed_dim,))
self.initialize_weights()
def initialize_weights(self):
torch.nn.init.normal_(self.cls_token, std=.02)
two_d_pos_embed = get_2d_sincos_pos_embed(self.two_d_pos_embed.shape[-1], 8, cls_token=True)
self.two_d_pos_embed.data.copy_(torch.from_numpy(two_d_pos_embed).float().unsqueeze(0))
torch.nn.init.normal_(self.invalid_xyz_token, std=.02)
def forward(self, seen_xyz, valid_seen_xyz):
emb = self.pos_embed(seen_xyz)
emb[~valid_seen_xyz] = 0.0
emb[~valid_seen_xyz] += self.invalid_xyz_token
B, H, W, C = emb.shape
emb = emb.view(B, H // self.win_size, self.win_size, W // self.win_size, self.win_size, C)
emb = emb.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, self.win_size * self.win_size, C)
emb = emb + self.two_d_pos_embed[:, 1:, :]
cls_token = self.cls_token + self.two_d_pos_embed[:, :1, :]
cls_tokens = cls_token.expand(emb.shape[0], -1, -1)
emb = torch.cat((cls_tokens, emb), dim=1)
for _, blk in enumerate(self.blocks):
emb = blk(emb)
return emb[:, 0].view(B, (H // self.win_size) * (W // self.win_size), -1)
class MCCEncoder(nn.Module):
"""
MCC's RGB and XYZ encoder
"""
def __init__(self,
img_size=224, patch_size=16, in_chans=3, embed_dim=1024, depth=24,
num_heads=16, mlp_ratio=4., norm_layer=nn.LayerNorm, drop_path=0.1):
super().__init__()
self.patch_embed = PatchEmbed(img_size, patch_size, in_chans, embed_dim)
num_patches = self.patch_embed.num_patches
self.n_tokens = num_patches + 1
self.embed_dim = embed_dim
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim), requires_grad=False)
self.blocks = nn.ModuleList([
Block(
embed_dim, num_heads, mlp_ratio, qkv_bias=True, norm_layer=norm_layer,
drop_path=drop_path
) for i in range(depth)])
self.norm = norm_layer(embed_dim)
self.cls_token_xyz = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.xyz_pos_embed = XYZPosEmbed(embed_dim, num_heads)
self.blocks_xyz = nn.ModuleList([
Block(
embed_dim, num_heads, mlp_ratio, qkv_bias=True, norm_layer=norm_layer,
drop_path=drop_path
) for i in range(depth)])
self.norm_xyz = norm_layer(embed_dim)
self.initialize_weights()
def initialize_weights(self):
pos_embed = get_2d_sincos_pos_embed(self.pos_embed.shape[-1], int(self.patch_embed.num_patches**.5), cls_token=True)
self.pos_embed.data.copy_(torch.from_numpy(pos_embed).float().unsqueeze(0))
# initialize patch_embed like nn.Linear (instead of nn.Conv2d)
w = self.patch_embed.proj.weight.data
torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
# timm's trunc_normal_(std=.02) is effectively normal_(std=0.02) as cutoff is too big (2.)
torch.nn.init.normal_(self.cls_token, std=.02)
torch.nn.init.normal_(self.cls_token_xyz, std=.02)
# initialize nn.Linear and nn.LayerNorm
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
torch.nn.init.xavier_uniform_(m.weight)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def forward(self, x, seen_xyz, valid_seen_xyz):
# get tokens
x = self.patch_embed(x)
x = x + self.pos_embed[:, 1:, :]
y = self.xyz_pos_embed(seen_xyz, valid_seen_xyz)
##### forward E_XYZ #####
# append cls token
cls_token_xyz = self.cls_token_xyz
cls_tokens_xyz = cls_token_xyz.expand(y.shape[0], -1, -1)
y = torch.cat((cls_tokens_xyz, y), dim=1)
# apply Transformer blocks
for blk in self.blocks_xyz:
y = blk(y)
y = self.norm_xyz(y)
##### forward E_RGB #####
# append cls token
cls_token = self.cls_token + self.pos_embed[:, :1, :]
cls_tokens = cls_token.expand(x.shape[0], -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
# apply Transformer blocks
for blk in self.blocks:
x = blk(x)
x = self.norm(x)
# combine encodings
return torch.cat([x, y], dim=2)
class TwoStreamDenoiser(nn.Module):
'''
Full Point diffusion model using MCC's encoders with the Two Stream backbone
'''
def __init__(
self,
num_points: int = 1024,
num_latents: int = 256,
cond_drop_prob: float = 0.1,
input_channels: int = 6,
output_channels: int = 6,
latent_dim: int = 768,
num_blocks: int = 6,
num_compute_layers: int = 4,
**kwargs,
):
super().__init__()
# define encoders
self.mcc_encoder = MCCEncoder(patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4,
norm_layer=partial(nn.LayerNorm, eps=1e-6))
# define backbone
self.denoiser_backbone = Denoiser_backbone(input_channels=input_channels, output_channels=output_channels,
num_x=num_points, num_z=num_latents, z_dim=latent_dim,
num_blocks=num_blocks, num_compute_layers=num_compute_layers)
self.cond_embed = nn.Sequential(
nn.LayerNorm(
normalized_shape=(self.mcc_encoder.embed_dim*2,)
),
nn.Linear(self.mcc_encoder.embed_dim*2, self.denoiser_backbone.z_dim),
)
self.cond_drop_prob = cond_drop_prob
self.num_points = num_points
def cached_model_kwargs(self, model_kwargs):
with torch.no_grad():
cond_dict = {}
images = preprocess_img(model_kwargs["images"])
embeddings = self.mcc_encoder(
images,
model_kwargs["seen_xyz"],
model_kwargs["seen_xyz_mask"],
)
cond_dict["embeddings"] = embeddings
if "prev_latent" in model_kwargs:
cond_dict["prev_latent"] = model_kwargs["prev_latent"]
return cond_dict
def forward(
self,
x,
t,
images=None,
seen_xyz=None,
seen_xyz_mask=None,
embeddings=None,
prev_latent=None,
):
"""
Forward pass through the model.
Parameters:
x: Tensor of shape [B, C, N_points], raw input point cloud.
t: Tensor of shape [B], time step.
images (Tensor, optional): A batch of images to condition on.
seen_xyz (Tensor, optional): A batch of xyz maps to condition on.
seen_xyz_mask (Tensor, optional): Validity mask for xyz maps.
embeddings (Tensor, optional): A batch of conditional latent (avoid duplicate
computation of MCC encoder in diffusion inference)
prev_latent (Tensor, optional): Self-conditioning latent.
Returns:
x_denoised: Tensor of shape [B, C, N_points], denoised point cloud/noise.
"""
assert images is not None or embeddings is not None, "must specify images or embeddings"
assert images is None or embeddings is None, "cannot specify both images and embeddings"
assert x.shape[-1] == self.num_points
# get the condition vectors with MCC encoders
if images is not None:
images = preprocess_img(images)
cond_vec = self.mcc_encoder(images, seen_xyz, seen_xyz_mask)
else:
cond_vec = embeddings
# condition dropout
if self.training:
mask = torch.rand(size=[len(x)]) >= self.cond_drop_prob
cond_vec = cond_vec * mask[:, None, None].to(cond_vec)
cond_vec = self.cond_embed(cond_vec)
# denoiser forward
x_denoised, latent = self.denoiser_backbone(x.permute(0, 2, 1).contiguous(), t, cond_vec, prev_latent=prev_latent)
x_denoised = x_denoised.permute(0, 2, 1).contiguous()
return x_denoised, latent