-
Notifications
You must be signed in to change notification settings - Fork 0
/
red_black_delete.c
388 lines (353 loc) · 9.98 KB
/
red_black_delete.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
/* C implementation of Red-Black Tree Deletion.
A red-black tree is a specialized binary search
tree data structure noted for fast storage and
retrieval of ordered information, and guarantee
that operations will complete within a known time.
It is very important to understand the workings
of red-black trees since it is used for the
implementation of the Completely Fair Scheduler
(CFS) in the Linx kernel and in other importamt
applications in operating systems research.
Compared to other self-balancing binary search
tree, the nodes in a red-black tree hold an extra
bit called "color" that represent "red" and "black"
and which is used when reorganizing the tree to
guarantee that is always approximately balanced.
The key properties of red-black trees, in addition to
those of any binary search tree, are five:
1) Every node is either red or black.
2) All leaf nodes (Nil nodes) are considerd black.
3) A red node cannot have a red child
4) Every path from a given node to any of its
descendent NIL nodes goes through the same number of
black nodes. This is called the "black height" of
the tree.
5) If a node N had exactly one child, it must be a
red child because if it were black, its NIL
descendents would sit at a different black depth than
N's NIl childrem, violating requirement 4.
The rebalancing is not perfect, but guarantees
seaching on O(log n) time, where n is the numberà
of nodes in the tree. Insertion and deletion, while
they require complex adjustements to the tree, are
carried out in the worst case O(log n) time as well.
For more in-depth information and proofs, see
https://en.wikipedia.org/wiki/Red%E2%80%93black_tree
*/
#include <stdio.h>
#include <stdlib.h>
enum nodeColor {
RED,
BLACK
};
struct rbNode {
int data, color;
struct rbNode *link[2];
};
struct rbNode *root = NULL;
// Create a red-black tree
struct rbNode *createNode(int data) {
struct rbNode *newnode;
newnode = (struct rbNode *)malloc(sizeof(struct rbNode));
newnode->data = data;
newnode->color = RED;
newnode->link[0] = newnode->link[1] = NULL;
return newnode;
}
// Insert an node
void insertion(int data) {
struct rbNode *stack[98], *ptr, *newnode, *xPtr, *yPtr;
int dir[98], ht = 0, index;
ptr = root;
if (!root) {
root = createNode(data);
return;
}
stack[ht] = root;
dir[ht++] = 0;
while (ptr != NULL) {
if (ptr->data == data) {
printf("Duplicates Not Allowed!!\n");
return;
}
index = (data - ptr->data) > 0 ? 1 : 0;
stack[ht] = ptr;
ptr = ptr->link[index];
dir[ht++] = index;
}
stack[ht - 1]->link[index] = newnode = createNode(data);
while ((ht >= 3) && (stack[ht - 1]->color == RED)) {
if (dir[ht - 2] == 0) {
yPtr = stack[ht - 2]->link[1];
if (yPtr != NULL && yPtr->color == RED) {
stack[ht - 2]->color = RED;
stack[ht - 1]->color = yPtr->color = BLACK;
ht = ht - 2;
} else {
if (dir[ht - 1] == 0) {
yPtr = stack[ht - 1];
} else {
xPtr = stack[ht - 1];
yPtr = xPtr->link[1];
xPtr->link[1] = yPtr->link[0];
yPtr->link[0] = xPtr;
stack[ht - 2]->link[0] = yPtr;
}
xPtr = stack[ht - 2];
xPtr->color = RED;
yPtr->color = BLACK;
xPtr->link[0] = yPtr->link[1];
yPtr->link[1] = xPtr;
if (xPtr == root) {
root = yPtr;
} else {
stack[ht - 3]->link[dir[ht - 3]] = yPtr;
}
break;
}
} else {
yPtr = stack[ht - 2]->link[0];
if ((yPtr != NULL) && (yPtr->color == RED)) {
stack[ht - 2]->color = RED;
stack[ht - 1]->color = yPtr->color = BLACK;
ht = ht - 2;
} else {
if (dir[ht - 1] == 1) {
yPtr = stack[ht - 1];
} else {
xPtr = stack[ht - 1];
yPtr = xPtr->link[0];
xPtr->link[0] = yPtr->link[1];
yPtr->link[1] = xPtr;
stack[ht - 2]->link[1] = yPtr;
}
xPtr = stack[ht - 2];
yPtr->color = BLACK;
xPtr->color = RED;
xPtr->link[1] = yPtr->link[0];
yPtr->link[0] = xPtr;
if (xPtr == root) {
root = yPtr;
} else {
stack[ht - 3]->link[dir[ht - 3]] = yPtr;
}
break;
}
}
}
root->color = BLACK;
}
// Delete a node
void deletion(int data) {
struct rbNode *stack[98], *ptr, *xPtr, *yPtr;
struct rbNode *pPtr, *qPtr, *rPtr;
int dir[98], ht = 0, diff, i;
enum nodeColor color;
if (!root) {
printf("Tree not available\n");
return;
}
ptr = root;
while (ptr != NULL) {
if ((data - ptr->data) == 0)
break;
diff = (data - ptr->data) > 0 ? 1 : 0;
stack[ht] = ptr;
dir[ht++] = diff;
ptr = ptr->link[diff];
}
if (ptr->link[1] == NULL) {
if ((ptr == root) && (ptr->link[0] == NULL)) {
free(ptr);
root = NULL;
} else if (ptr == root) {
root = ptr->link[0];
free(ptr);
} else {
stack[ht - 1]->link[dir[ht - 1]] = ptr->link[0];
}
} else {
xPtr = ptr->link[1];
if (xPtr->link[0] == NULL) {
xPtr->link[0] = ptr->link[0];
color = xPtr->color;
xPtr->color = ptr->color;
ptr->color = color;
if (ptr == root) {
root = xPtr;
} else {
stack[ht - 1]->link[dir[ht - 1]] = xPtr;
}
dir[ht] = 1;
stack[ht++] = xPtr;
} else {
i = ht++;
while (1) {
dir[ht] = 0;
stack[ht++] = xPtr;
yPtr = xPtr->link[0];
if (!yPtr->link[0])
break;
xPtr = yPtr;
}
dir[i] = 1;
stack[i] = yPtr;
if (i > 0)
stack[i - 1]->link[dir[i - 1]] = yPtr;
yPtr->link[0] = ptr->link[0];
xPtr->link[0] = yPtr->link[1];
yPtr->link[1] = ptr->link[1];
if (ptr == root) {
root = yPtr;
}
color = yPtr->color;
yPtr->color = ptr->color;
ptr->color = color;
}
}
if (ht < 1)
return;
if (ptr->color == BLACK) {
while (1) {
pPtr = stack[ht - 1]->link[dir[ht - 1]];
if (pPtr && pPtr->color == RED) {
pPtr->color = BLACK;
break;
}
if (ht < 2)
break;
if (dir[ht - 2] == 0) {
rPtr = stack[ht - 1]->link[1];
if (!rPtr)
break;
if (rPtr->color == RED) {
stack[ht - 1]->color = RED;
rPtr->color = BLACK;
stack[ht - 1]->link[1] = rPtr->link[0];
rPtr->link[0] = stack[ht - 1];
if (stack[ht - 1] == root) {
root = rPtr;
} else {
stack[ht - 2]->link[dir[ht - 2]] = rPtr;
}
dir[ht] = 0;
stack[ht] = stack[ht - 1];
stack[ht - 1] = rPtr;
ht++;
rPtr = stack[ht - 1]->link[1];
}
if ((!rPtr->link[0] || rPtr->link[0]->color == BLACK) &&
(!rPtr->link[1] || rPtr->link[1]->color == BLACK)) {
rPtr->color = RED;
} else {
if (!rPtr->link[1] || rPtr->link[1]->color == BLACK) {
qPtr = rPtr->link[0];
rPtr->color = RED;
qPtr->color = BLACK;
rPtr->link[0] = qPtr->link[1];
qPtr->link[1] = rPtr;
rPtr = stack[ht - 1]->link[1] = qPtr;
}
rPtr->color = stack[ht - 1]->color;
stack[ht - 1]->color = BLACK;
rPtr->link[1]->color = BLACK;
stack[ht - 1]->link[1] = rPtr->link[0];
rPtr->link[0] = stack[ht - 1];
if (stack[ht - 1] == root) {
root = rPtr;
} else {
stack[ht - 2]->link[dir[ht - 2]] = rPtr;
}
break;
}
} else {
rPtr = stack[ht - 1]->link[0];
if (!rPtr)
break;
if (rPtr->color == RED) {
stack[ht - 1]->color = RED;
rPtr->color = BLACK;
stack[ht - 1]->link[0] = rPtr->link[1];
rPtr->link[1] = stack[ht - 1];
if (stack[ht - 1] == root) {
root = rPtr;
} else {
stack[ht - 2]->link[dir[ht - 2]] = rPtr;
}
dir[ht] = 1;
stack[ht] = stack[ht - 1];
stack[ht - 1] = rPtr;
ht++;
rPtr = stack[ht - 1]->link[0];
}
if ((!rPtr->link[0] || rPtr->link[0]->color == BLACK) &&
(!rPtr->link[1] || rPtr->link[1]->color == BLACK)) {
rPtr->color = RED;
} else {
if (!rPtr->link[0] || rPtr->link[0]->color == BLACK) {
qPtr = rPtr->link[1];
rPtr->color = RED;
qPtr->color = BLACK;
rPtr->link[1] = qPtr->link[0];
qPtr->link[0] = rPtr;
rPtr = stack[ht - 1]->link[0] = qPtr;
}
rPtr->color = stack[ht - 1]->color;
stack[ht - 1]->color = BLACK;
rPtr->link[0]->color = BLACK;
stack[ht - 1]->link[0] = rPtr->link[1];
rPtr->link[1] = stack[ht - 1];
if (stack[ht - 1] == root) {
root = rPtr;
} else {
stack[ht - 2]->link[dir[ht - 2]] = rPtr;
}
break;
}
}
ht--;
}
}
}
// Print the inorder traversal of the tree
void inorderTraversal(struct rbNode *node) {
if (node) {
inorderTraversal(node->link[0]);
printf("%d ", node->data);
inorderTraversal(node->link[1]);
}
return;
}
// Driver code
int main() {
int ch, data;
while (1) {
printf("1. Insertion\t2. Deletion\n");
printf("3. Traverse\t4. Exit");
printf("\nEnter your choice:");
scanf("%d", &ch);
switch (ch) {
case 1:
printf("Enter the element to insert:");
scanf("%d", &data);
insertion(data);
break;
case 2:
printf("Enter the element to delete:");
scanf("%d", &data);
deletion(data);
break;
case 3:
inorderTraversal(root);
printf("\n");
break;
case 4:
exit(0);
default:
printf("Not available\n");
break;
}
printf("\n");
}
return 0;
}