From ef1cfefe21e01b9fda50e70c45f55777a9e6d1f9 Mon Sep 17 00:00:00 2001 From: Nima Shoghi Date: Sun, 1 Dec 2024 00:08:58 -0500 Subject: [PATCH] Docs: Fix API reference links for the dataset config classes --- docs/guides/datasets.md | 16 ++++++++-------- 1 file changed, 8 insertions(+), 8 deletions(-) diff --git a/docs/guides/datasets.md b/docs/guides/datasets.md index adbe7da..a0f62c5 100644 --- a/docs/guides/datasets.md +++ b/docs/guides/datasets.md @@ -5,7 +5,7 @@ MatterTune provides support for various dataset formats and sources commonly use ## XYZ Dataset Simple and widely used atomic structure format that can be read from XYZ files. -API Reference: {py:class}`mattertune.data.xyz.XYZDatasetConfig` +API Reference: {py:class}`mattertune.configs.XYZDatasetConfig` ```python config = mt.configs.MatterTunerConfig( @@ -24,7 +24,7 @@ config = mt.configs.MatterTunerConfig( ## ASE Database Direct interface with ASE database files, supporting custom property keys for energy, forces, and stress. -API Reference: {py:class}`mattertune.data.db.DBDatasetConfig` +API Reference: {py:class}`mattertune.configs.DBDatasetConfig` ```python config = mt.configs.MatterTunerConfig( @@ -47,7 +47,7 @@ config = mt.configs.MatterTunerConfig( ## Materials Project Dataset Direct integration with the Materials Project database, allowing for custom queries and property retrieval. -API Reference: {py:class}`mattertune.data.mp.MPDatasetConfig` +API Reference: {py:class}`mattertune.configs.MPDatasetConfig` ```python config = mt.configs.MatterTunerConfig( @@ -68,7 +68,7 @@ config = mt.configs.MatterTunerConfig( ## Materials Project Trajectories (MPTraj) Access to molecular dynamics trajectories from the Materials Project, with filtering options for system size and composition. -API Reference: {py:class}`mattertune.data.mptraj.MPTrajDatasetConfig` +API Reference: {py:class}`mattertune.configs.MPTrajDatasetConfig` ```python config = mt.configs.MatterTunerConfig( @@ -90,7 +90,7 @@ config = mt.configs.MatterTunerConfig( ## Matbench Dataset Access to the Matbench benchmark datasets for materials property prediction tasks. -API Reference: {py:class}`mattertune.data.matbench.MatbenchDatasetConfig` +API Reference: {py:class}`mattertune.configs.MatbenchDatasetConfig` ```python config = mt.configs.MatterTunerConfig( @@ -111,7 +111,7 @@ config = mt.configs.MatterTunerConfig( ## OMAT24 Dataset Access to the OMAT24 dataset used from FAIR Chemistry. -API Reference: {py:class}`mattertune.data.omat24.OMAT24DatasetConfig` +API Reference: {py:class}`mattertune.configs.OMAT24DatasetConfig` ```python config = mt.configs.MatterTunerConfig( @@ -130,7 +130,7 @@ config = mt.configs.MatterTunerConfig( ## JSON Dataset Allows reading atomic structures and properties from JSON files with a specific schema. -API Reference: {py:class}`mattertune.data.json.JSONDatasetConfig` +API Reference: {py:class}`mattertune.configs.JSONDatasetConfig` Expected JSON format: ```json @@ -168,7 +168,7 @@ config = mt.configs.MatterTunerConfig( The `tasks` dictionary maps property names to the corresponding JSON keys in your data file. -Each dataset configuration can be used with either `AutoSplitDataModuleConfig` for automatic train/validation splitting or `ManualSplitDataModuleConfig` for manual split specification. The examples above use `AutoSplitDataModuleConfig` for simplicity. +Each dataset configuration can be used with either {py:class}`mattertune.configs.AutoSplitDataModuleConfig` for automatic train/validation splitting or {py:class}`mattertune.configs.ManualSplitDataModuleConfig` for manual split specification. The examples above use {py:class}`mattertune.configs.AutoSplitDataModuleConfig` for simplicity. Note that some datasets may require additional dependencies: - Materials Project dataset requires the `mp-api` package