-
Notifications
You must be signed in to change notification settings - Fork 72
/
Copy pathaudio.py
112 lines (75 loc) · 2.85 KB
/
audio.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import librosa
import librosa.filters
import math
import numpy as np
from scipy import signal
from hparams import hparams
from scipy.io import wavfile
# r9r9 preprocessing
import lws
def load_wav(path):
return librosa.load(path, sr=hparams.sample_rate)[0]
def save_wav(wav, path):
wav = wav * 32767 / max(0.01, np.max(np.abs(wav)))
wavfile.write(path, hparams.sample_rate, wav.astype(np.int16))
def preemphasis(x):
from nnmnkwii.preprocessing import preemphasis
return preemphasis(x, hparams.preemphasis)
def inv_preemphasis(x):
from nnmnkwii.preprocessing import inv_preemphasis
return inv_preemphasis(x, hparams.preemphasis)
def spectrogram(y):
D = _lws_processor().stft(preemphasis(y)).T
S = _amp_to_db(np.abs(D)) - hparams.ref_level_db
return _normalize(S)
def inv_spectrogram(spectrogram):
'''Converts spectrogram to waveform using librosa'''
S = _db_to_amp(_denormalize(spectrogram) + hparams.ref_level_db) # Convert back to linear
processor = _lws_processor()
D = processor.run_lws(S.astype(np.float64).T ** hparams.power)
y = processor.istft(D).astype(np.float32)
return inv_preemphasis(y)
def melspectrogram(y):
D = _lws_processor().stft(preemphasis(y)).T
S = _amp_to_db(_linear_to_mel(np.abs(D))) - hparams.ref_level_db
if not hparams.allow_clipping_in_normalization:
assert S.max() <= 0 and S.min() - hparams.min_level_db >= 0
return _normalize(S)
def _lws_processor():
return lws.lws(hparams.fft_size, hparams.hop_size, mode="speech")
# Conversions:
_mel_basis = None
def _linear_to_mel(spectrogram):
global _mel_basis
if _mel_basis is None:
_mel_basis = _build_mel_basis()
return np.dot(_mel_basis, spectrogram)
def _build_mel_basis():
if hparams.fmax is not None:
assert hparams.fmax <= hparams.sample_rate // 2
return librosa.filters.mel(hparams.sample_rate, hparams.fft_size,
fmin=hparams.fmin, fmax=hparams.fmax,
n_mels=hparams.num_mels)
def _amp_to_db(x):
min_level = np.exp(hparams.min_level_db / 20 * np.log(10))
return 20 * np.log10(np.maximum(min_level, x))
def _db_to_amp(x):
return np.power(10.0, x * 0.05)
def _normalize(S):
return np.clip((S - hparams.min_level_db) / -hparams.min_level_db, 0, 1)
def _denormalize(S):
return (np.clip(S, 0, 1) * -hparams.min_level_db) + hparams.min_level_db
# Fatcord's preprocessing
def quantize(x):
"""quantize audio signal
"""
quant = (x + 1.) * (2**hparams.bits - 1) / 2
return quant.astype(np.int)
# testing
def test_everything():
wav = np.random.randn(12000,)
mel = melspectrogram(wav)
spec = spectrogram(wav)
quant = quantize(wav)
print(wav.shape, mel.shape, spec.shape, quant.shape)
print(quant.max(), quant.min(), mel.max(), mel.min(), spec.max(), spec.min())