forked from Zejun-Yang/AniPortrait
-
Notifications
You must be signed in to change notification settings - Fork 0
/
aniplusNOCROP.py
750 lines (626 loc) · 24.6 KB
/
aniplusNOCROP.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
import gradio as gr
import os
import shutil
import ffmpeg
from datetime import datetime
from pathlib import Path
import numpy as np
import cv2
import torch
import onnxruntime
import onnxruntime as ort
from diffusers import AutoencoderKL, DDIMScheduler
from einops import repeat
from omegaconf import OmegaConf
from PIL import Image
from torchvision import transforms
from transformers import CLIPVisionModelWithProjection
from scipy.interpolate import interp1d
from tqdm import tqdm
from face_enhancer import (
get_available_enhancer_names,
load_face_enhancer_model,
cv2_interpolations,
)
import tempfile
import uuid
import os
import cv2
import ffmpeg
from face_enhancer import load_face_enhancer_model
from tqdm import tqdm
from src.models.pose_guider import PoseGuider
from src.models.unet_2d_condition import UNet2DConditionModel
from src.models.unet_3d import UNet3DConditionModel
from src.pipelines.pipeline_pose2vid_long import Pose2VideoPipeline
from src.utils.util import get_fps, read_frames, save_videos_grid
from src.audio_models.model import Audio2MeshModel
from src.utils.audio_util import prepare_audio_feature
from src.utils.mp_utils import LMKExtractor
from src.utils.draw_util import FaceMeshVisualizer
from src.utils.pose_util import (
project_points,
project_points_with_trans,
matrix_to_euler_and_translation,
euler_and_translation_to_matrix,
)
from src.utils.util import crop_face
from scripts.vid2vid import smooth_pose_seq
from src.utils.frame_interpolation import (
init_frame_interpolation_model,
batch_images_interpolation_tool,
)
## ------------------------------ FACE ENHANCEMENT ------------------------------
# to be continued
PROVIDER = ["CUDAExecutionProvider"]
available_providers = onnxruntime.get_available_providers()
if "CUDAExecutionProvider" in available_providers:
print("\n********** Running on CUDA **********\n")
# PROVIDER = ["CUDAExecutionProvider", "CPUExecutionProvider"]
device = "cuda"
EMPTY_CACHE = lambda: torch.cuda.empty_cache() if device == "cuda" else None
config = OmegaConf.load(
"/content/AniPortrait-plus/configs/prompts/animation_audio.yaml"
)
if config.weight_dtype == "fp16":
weight_dtype = torch.float16
else:
weight_dtype = torch.float32
audio_infer_config = OmegaConf.load(config.audio_inference_config)
# prepare model
a2m_model = Audio2MeshModel(audio_infer_config["a2m_model"])
a2m_model.load_state_dict(
torch.load(audio_infer_config["pretrained_model"]["a2m_ckpt"], map_location="cpu"),
strict=False,
)
a2m_model.cuda().eval()
vae = AutoencoderKL.from_pretrained(
config.pretrained_vae_path,
).to("cuda", dtype=weight_dtype)
reference_unet = UNet2DConditionModel.from_pretrained(
config.pretrained_base_model_path,
subfolder="unet",
).to(dtype=weight_dtype, device="cuda")
inference_config_path = config.inference_config
infer_config = OmegaConf.load(inference_config_path)
denoising_unet = UNet3DConditionModel.from_pretrained_2d(
config.pretrained_base_model_path,
config.motion_module_path,
subfolder="unet",
unet_additional_kwargs=infer_config.unet_additional_kwargs,
).to(dtype=weight_dtype, device="cuda")
pose_guider = PoseGuider(noise_latent_channels=320, use_ca=True).to(
device="cuda", dtype=weight_dtype
) # not use cross attention
image_enc = CLIPVisionModelWithProjection.from_pretrained(config.image_encoder_path).to(
dtype=weight_dtype, device="cuda"
)
sched_kwargs = OmegaConf.to_container(infer_config.noise_scheduler_kwargs)
scheduler = DDIMScheduler(**sched_kwargs)
# load pretrained weights
denoising_unet.load_state_dict(
torch.load(config.denoising_unet_path, map_location="cpu"),
strict=False,
)
reference_unet.load_state_dict(
torch.load(config.reference_unet_path, map_location="cpu"),
)
pose_guider.load_state_dict(
torch.load(config.pose_guider_path, map_location="cpu"),
)
pipe = Pose2VideoPipeline(
vae=vae,
image_encoder=image_enc,
reference_unet=reference_unet,
denoising_unet=denoising_unet,
pose_guider=pose_guider,
scheduler=scheduler,
)
pipe = pipe.to("cuda", dtype=weight_dtype)
frame_inter_model = init_frame_interpolation_model()
# def upscale_video_with_face_enhancer(video_path, method):
# Load the face enhancement model
# face_enhancer = load_face_enhancer_model(method)
# Upscale the video using the face enhancement model
# input_video = ffmpeg.input(video_path)
# output_video = ffmpeg.output(input_video.video, f"{os.path.splitext(video_path)[0]}_upscaled.mp4", vcodec='libx264', r=30)
# ffmpeg.run(output_video)
# return f"{os.path.splitext(video_path)[0]}_upscaled.mp4"
####UPSCALE VIDEOS#####
def upscale_video_with_face_enhancer(video_path, method, device, batch_size=12):
# Load the face enhancement model
face_enhancer, face_enhancer_runner = load_face_enhancer_model(
method, device="cuda:0"
)
# Create a temporary directory to store the frames
with tempfile.TemporaryDirectory() as temp_dir:
# Extract frames from the input video
frame_paths = []
cap = cv2.VideoCapture(video_path)
frame_idx = 0
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = cap.get(cv2.CAP_PROP_FPS)
pbar = tqdm(total=total_frames, unit="frames") # Create a progress bar
while True:
ret, frame = cap.read()
if not ret:
break
frame_path = os.path.join(temp_dir, f"frame_{frame_idx}.jpg")
cv2.imwrite(frame_path, frame)
frame_paths.append(frame_path)
frame_idx += 1
pbar.update(1) # Update the progress bar
cap.release()
pbar.close() # Close the progress bar
# Upscale the frames in batches
upscaled_frames = []
for i in tqdm(
range(0, len(frame_paths), batch_size),
unit="batches",
desc="Upscaling frames",
):
batch_frame_paths = frame_paths[i : i + batch_size]
batch_frames = [cv2.imread(path) for path in batch_frame_paths]
if face_enhancer is None:
batch_upscaled_frames = [
face_enhancer_runner(frame, None) for frame in batch_frames
]
else:
batch_upscaled_frames = [
face_enhancer_runner(frame, face_enhancer) for frame in batch_frames
]
upscaled_frames.extend(batch_upscaled_frames)
# Create the output video from the upscaled frames
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as temp_file:
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
height, width, _ = upscaled_frames[0].shape
out = cv2.VideoWriter(temp_file.name, fourcc, fps, (width, height))
for frame in upscaled_frames:
out.write(frame)
out.release()
# Extract the audio from the original video
audio_output = f"{temp_dir}/audio.aac"
try:
ffmpeg.input(video_path).output(audio_output, acodec="copy").run()
except:
print(f"Failed to extract audio from {video_path}")
audio_output = None
# Generate the final video path with "_upscaled" at the end
unique_id = str(uuid.uuid4())
final_video_path = (
f"{os.path.splitext(video_path)[0]}_{unique_id}_upscaled.mp4"
)
# Merge the upscaled video and the audio
stream = ffmpeg.input(temp_file.name)
if audio_output:
audio = ffmpeg.input(audio_output)
ffmpeg.output(
stream.video,
audio.audio,
final_video_path,
vcodec="copy",
acodec="aac",
shortest=None,
).run()
else:
ffmpeg.output(stream.video, final_video_path, vcodec="copy").run()
# Return the path to the final video
return final_video_path
def get_headpose_temp(input_video):
lmk_extractor = LMKExtractor()
cap = cv2.VideoCapture(input_video)
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = cap.get(cv2.CAP_PROP_FPS)
trans_mat_list = []
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
result = lmk_extractor(frame)
trans_mat_list.append(result["trans_mat"].astype(np.float32))
cap.release()
trans_mat_arr = np.array(trans_mat_list)
# compute delta pose
trans_mat_inv_frame_0 = np.linalg.inv(trans_mat_arr[0])
pose_arr = np.zeros([trans_mat_arr.shape[0], 6])
for i in range(pose_arr.shape[0]):
pose_mat = trans_mat_inv_frame_0 @ trans_mat_arr[i]
euler_angles, translation_vector = matrix_to_euler_and_translation(pose_mat)
pose_arr[i, :3] = euler_angles
pose_arr[i, 3:6] = translation_vector
# interpolate to 30 fps
new_fps = 30
old_time = np.linspace(0, total_frames / fps, total_frames)
new_time = np.linspace(0, total_frames / fps, int(total_frames * new_fps / fps))
pose_arr_interp = np.zeros((len(new_time), 6))
for i in range(6):
interp_func = interp1d(old_time, pose_arr[:, i])
pose_arr_interp[:, i] = interp_func(new_time)
pose_arr_smooth = smooth_pose_seq(pose_arr_interp)
return pose_arr_smooth
def audio2video(
input_audio,
ref_img,
headpose_video=None,
size=512,
steps=10,
length=0,
seed=42,
acc_flag=True,
):
fps = 30
cfg = 3.5
fi_step = 3 if acc_flag else 1
generator = torch.manual_seed(seed)
lmk_extractor = LMKExtractor()
vis = FaceMeshVisualizer()
width, height = size, size
date_str = datetime.now().strftime("%Y%m%d")
time_str = datetime.now().strftime("%H%M")
save_dir_name = f"{time_str}--seed_{seed}-{size}x{size}"
save_dir = Path(f"output/{date_str}/{save_dir_name}")
while os.path.exists(save_dir):
save_dir = Path(
f"output/{date_str}/{save_dir_name}_{np.random.randint(10000):04d}"
)
save_dir.mkdir(exist_ok=True, parents=True)
ref_image_np = cv2.cvtColor(ref_img, cv2.COLOR_RGB2BGR)
ref_image_np = crop_face(ref_image_np, lmk_extractor)
if ref_image_np is None:
return None, Image.fromarray(ref_img)
ref_image_np = cv2.resize(ref_image_np, (size, size))
ref_image_pil = Image.fromarray(cv2.cvtColor(ref_image_np, cv2.COLOR_BGR2RGB))
face_result = lmk_extractor(ref_image_np)
if face_result is None:
return None, ref_image_pil
lmks = face_result["lmks"].astype(np.float32)
ref_pose = vis.draw_landmarks(
(ref_image_np.shape[1], ref_image_np.shape[0]), lmks, normed=True
)
sample = prepare_audio_feature(
input_audio, wav2vec_model_path=audio_infer_config["a2m_model"]["model_path"]
)
sample["audio_feature"] = torch.from_numpy(sample["audio_feature"]).float().cuda()
sample["audio_feature"] = sample["audio_feature"].unsqueeze(0)
# inference
pred = a2m_model.infer(sample["audio_feature"], sample["seq_len"])
pred = pred.squeeze().detach().cpu().numpy()
pred = pred.reshape(pred.shape[0], -1, 3)
pred = pred + face_result["lmks3d"]
if headpose_video is not None:
pose_seq = get_headpose_temp(headpose_video)
else:
pose_seq = np.load(config["pose_temp"])
mirrored_pose_seq = np.concatenate((pose_seq, pose_seq[-2:0:-1]), axis=0)
cycled_pose_seq = np.tile(
mirrored_pose_seq, (sample["seq_len"] // len(mirrored_pose_seq) + 1, 1)
)[: sample["seq_len"]]
# project 3D mesh to 2D landmark
projected_vertices = project_points(
pred, face_result["trans_mat"], cycled_pose_seq, [height, width]
)
pose_images = []
for i, verts in enumerate(projected_vertices):
lmk_img = vis.draw_landmarks((width, height), verts, normed=False)
pose_images.append(lmk_img)
pose_list = []
args_L = len(pose_images) if length == 0 or length > len(pose_images) else length
for pose_image_np in pose_images[:args_L:fi_step]:
pose_image_np = cv2.resize(pose_image_np, (width, height))
pose_list.append(pose_image_np)
pose_list = np.array(pose_list)
video_length = len(pose_list)
video = pipe(
ref_image_pil,
pose_list,
ref_pose,
width,
height,
video_length,
steps,
cfg,
generator=generator,
).videos
if acc_flag:
video = batch_images_interpolation_tool(
video, frame_inter_model, inter_frames=fi_step - 1
)
save_path = f"{save_dir}/{size}x{size}_{time_str}_noaudio.mp4"
save_videos_grid(
video,
save_path,
n_rows=1,
fps=fps,
)
stream = ffmpeg.input(save_path)
audio = ffmpeg.input(input_audio)
ffmpeg.output(
stream.video,
audio.audio,
save_path.replace("_noaudio.mp4", ".mp4"),
vcodec="copy",
acodec="aac",
shortest=None,
).run()
os.remove(save_path)
return save_path.replace("_noaudio.mp4", ".mp4"), ref_image_pil
def video2video(
ref_img, source_video, size=512, steps=10, length=0, seed=42, acc_flag=True
):
cfg = 3.5
fi_step = 3 if acc_flag else 1
generator = torch.manual_seed(seed)
lmk_extractor = LMKExtractor()
vis = FaceMeshVisualizer()
width, height = size, size
date_str = datetime.now().strftime("%Y%m%d")
time_str = datetime.now().strftime("%H%M")
save_dir_name = f"{time_str}--seed_{seed}-{size}x{size}"
save_dir = Path(f"output/{date_str}/{save_dir_name}")
while os.path.exists(save_dir):
save_dir = Path(
f"output/{date_str}/{save_dir_name}_{np.random.randint(10000):04d}"
)
save_dir.mkdir(exist_ok=True, parents=True)
ref_image_np = cv2.cvtColor(ref_img, cv2.COLOR_RGB2BGR)
#ref_image_np = crop_face(ref_image_np, lmk_extractor)
if ref_image_np is None:
return None, Image.fromarray(ref_img)
ref_image_np = cv2.resize(ref_image_np, (size, size))
ref_image_pil = Image.fromarray(cv2.cvtColor(ref_image_np, cv2.COLOR_BGR2RGB))
face_result = lmk_extractor(ref_image_np)
if face_result is None:
return None, ref_image_pil
lmks = face_result["lmks"].astype(np.float32)
ref_pose = vis.draw_landmarks(
(ref_image_np.shape[1], ref_image_np.shape[0]), lmks, normed=True
)
source_images = read_frames(source_video)
src_fps = get_fps(source_video)
step = 1
if src_fps == 60:
src_fps = 30
step = 2
pose_trans_list = []
verts_list = []
bs_list = []
args_L = (
len(source_images)
if length == 0 or length * step > len(source_images)
else length * step
)
for src_image_pil in source_images[: args_L : step * fi_step]:
src_img_np = cv2.cvtColor(np.array(src_image_pil), cv2.COLOR_RGB2BGR)
frame_height, frame_width, _ = src_img_np.shape
src_img_result = lmk_extractor(src_img_np)
if src_img_result is None:
break
pose_trans_list.append(src_img_result["trans_mat"])
verts_list.append(src_img_result["lmks3d"])
bs_list.append(src_img_result["bs"])
trans_mat_arr = np.array(pose_trans_list)
verts_arr = np.array(verts_list)
bs_arr = np.array(bs_list)
min_bs_idx = np.argmin(bs_arr.sum(1))
# compute delta pose
pose_arr = np.zeros([trans_mat_arr.shape[0], 6])
for i in range(pose_arr.shape[0]):
euler_angles, translation_vector = matrix_to_euler_and_translation(
trans_mat_arr[i]
) # real pose of source
pose_arr[i, :3] = euler_angles
pose_arr[i, 3:6] = translation_vector
init_tran_vec = face_result["trans_mat"][:3, 3] # init translation of tgt
pose_arr[:, 3:6] = (
pose_arr[:, 3:6] - pose_arr[0, 3:6] + init_tran_vec
) # (relative translation of source) + (init translation of tgt)
pose_arr_smooth = smooth_pose_seq(pose_arr, window_size=3)
pose_mat_smooth = [
euler_and_translation_to_matrix(pose_arr_smooth[i][:3], pose_arr_smooth[i][3:6])
for i in range(pose_arr_smooth.shape[0])
]
pose_mat_smooth = np.array(pose_mat_smooth)
# face retarget
verts_arr = verts_arr - verts_arr[min_bs_idx] + face_result["lmks3d"]
# project 3D mesh to 2D landmark
projected_vertices = project_points_with_trans(
verts_arr, pose_mat_smooth, [frame_height, frame_width]
)
pose_list = []
for i, verts in enumerate(projected_vertices):
lmk_img = vis.draw_landmarks((frame_width, frame_height), verts, normed=False)
pose_image_np = cv2.resize(lmk_img, (width, height))
pose_list.append(pose_image_np)
pose_list = np.array(pose_list)
video_length = len(pose_list)
video = pipe(
ref_image_pil,
pose_list,
ref_pose,
width,
height,
video_length,
steps,
cfg,
generator=generator,
).videos
if acc_flag:
video = batch_images_interpolation_tool(
video, frame_inter_model, inter_frames=fi_step - 1
)
save_path = f"{save_dir}/{size}x{size}_{time_str}_noaudio.mp4"
save_videos_grid(
video,
save_path,
n_rows=1,
fps=src_fps,
)
audio_output = f"{save_dir}/audio_from_video.aac"
# extract audio
try:
ffmpeg.input(source_video).output(audio_output, acodec="copy").run()
# merge audio and video
stream = ffmpeg.input(save_path)
audio = ffmpeg.input(audio_output)
ffmpeg.output(
stream.video,
audio.audio,
save_path.replace("_noaudio.mp4", ".mp4"),
vcodec="copy",
acodec="aac",
shortest=None,
).run()
os.remove(save_path)
os.remove(audio_output)
except:
shutil.move(save_path, save_path.replace("_noaudio.mp4", ".mp4"))
return save_path.replace("_noaudio.mp4", ".mp4"), ref_image_pil
################# GUI ################
title = r"""
<h1>AniPortrait</h1>
"""
description = r"""
<b>Official 🤗 Gradio demo</b> for <a href='https://github.com/Zejun-Yang/AniPortrait' target='_blank'><b>AniPortrait: Audio-Driven Synthesis of Photorealistic Portrait Animations</b></a>.<br>
"""
with gr.Blocks() as demo:
gr.Markdown(title)
gr.Markdown(description)
with gr.Tab("Audio2video"):
with gr.Row():
with gr.Column():
with gr.Row():
a2v_input_audio = gr.Audio(
sources=["upload", "microphone"],
type="filepath",
editable=True,
label="Input audio",
interactive=True,
)
a2v_ref_img = gr.Image(
label="Upload reference image", sources="upload"
)
a2v_headpose_video = gr.Video(
label="Option: upload head pose reference video",
sources="upload",
)
with gr.Row():
a2v_size_slider = gr.Slider(
minimum=256,
maximum=768,
step=8,
value=512,
label="Video size (-W & -H)",
)
a2v_step_slider = gr.Slider(
minimum=5, maximum=50, step=1, value=10, label="Steps (--steps)"
)
with gr.Row():
a2v_length = gr.Slider(
minimum=0,
maximum=9999,
step=1,
value=0,
label="Length (-L) (Set to 0 to automatically calculate length)",
)
a2v_seed = gr.Number(value=42, label="Seed (--seed)")
with gr.Row():
a2v_acc_flag = gr.Checkbox(value=True, label="Accelerate")
a2v_botton = gr.Button("Generate", variant="primary")
a2v_output_video = gr.PlayableVideo(label="Result", interactive=False)
# gr.Examples(
# @ examples=[
# ["configs/inference/audio/lyl.wav", "configs/inference/ref_images/Aragaki.png", None],
# ["configs/inference/audio/lyl.wav", "configs/inference/ref_images/solo.png", None],
# ["configs/inference/audio/lyl.wav", "configs/inference/ref_images/lyl.png", "configs/inference/head_pose_temp/pose_ref_video.mp4"],
# ],
# inputs=[a2v_input_audio, a2v_ref_img, a2v_headpose_video],
# )
with gr.Tab("Video2video"):
with gr.Row():
with gr.Column():
with gr.Row():
v2v_ref_img = gr.Image(
label="Upload reference image", sources="upload"
)
v2v_source_video = gr.Video(
label="Upload source video", sources="upload"
)
with gr.Row():
v2v_size_slider = gr.Slider(
minimum=256,
maximum=768,
step=8,
value=512,
label="Video size (-W & -H)",
)
v2v_step_slider = gr.Slider(
minimum=5, maximum=50, step=1, value=10, label="Steps (--steps)"
)
with gr.Row():
v2v_length = gr.Slider(
minimum=0,
maximum=9999,
step=1,
value=0,
label="Length (-L) (Set to 0 to automatically calculate length)",
)
v2v_seed = gr.Number(value=42, label="Seed (--seed)")
with gr.Row():
v2v_acc_flag = gr.Checkbox(value=True, label="Accelerate")
v2v_botton = gr.Button("Generate", variant="primary")
v2v_output_video = gr.PlayableVideo(label="Result", interactive=False)
# gr.Examples(
# examples=[
# ["configs/inference/ref_images/Aragaki.png", "configs/inference/video/Aragaki_song.mp4"],
# ["configs/inference/ref_images/solo.png", "configs/inference/video/Aragaki_song.mp4"],
# ["configs/inference/ref_images/lyl.png", "configs/inference/head_pose_temp/pose_ref_video.mp4"],
# ],
# inputs=[v2v_ref_img, v2v_source_video, a2v_headpose_video],
# )
with gr.Tab("Video Upscale"):
with gr.Row():
with gr.Column():
with gr.Row():
video_path_textbox = gr.Textbox(label="Enter video path:")
upscale_method = gr.Dropdown(
get_available_enhancer_names(),
label="Upscale method",
value="REAL-ESRGAN 4x",
)
upscale_botton = gr.Button("Upscale", variant="primary")
upscale_output_video = gr.PlayableVideo(
label="Upscaled video", interactive=False
)
a2v_botton.click(
fn=audio2video,
inputs=[
a2v_input_audio,
a2v_ref_img,
a2v_headpose_video,
a2v_size_slider,
a2v_step_slider,
a2v_length,
a2v_seed,
a2v_acc_flag,
],
outputs=[a2v_output_video, a2v_ref_img],
)
v2v_botton.click(
fn=video2video,
inputs=[
v2v_ref_img,
v2v_source_video,
v2v_size_slider,
v2v_step_slider,
v2v_length,
v2v_seed,
v2v_acc_flag,
],
outputs=[v2v_output_video, v2v_ref_img],
)
upscale_botton.click(
fn=upscale_video_with_face_enhancer,
inputs=[video_path_textbox, upscale_method],
outputs=[upscale_output_video],
)
demo.launch(share=True)