From c3a7038d9e637bed1573b2dd59e9b83e9261c851 Mon Sep 17 00:00:00 2001
From: Pengfei Liu <59123869+pfliu-nlp@users.noreply.github.com>
Date: Tue, 20 Feb 2024 11:48:17 +0800
Subject: [PATCH] update ta
---
.idea/cs2916.iml | 8 ++++
.idea/inspectionProfiles/Project_Default.xml | 6 +++
.../inspectionProfiles/profiles_settings.xml | 6 +++
.idea/modules.xml | 8 ++++
.idea/vcs.xml | 6 +++
.idea/workspace.xml | 41 +++++++++++++++++
404.html | 2 +-
assets/js/0e384e19.74b6af7d.js | 1 +
assets/js/38feca5b.beebb6e7.js | 1 +
assets/js/935f2afb.1775ec6b.js | 1 +
assets/js/runtime~main.b7bb073b.js | 1 +
blog/archive/index.html | 2 +-
blog/first-blog-post/index.html | 2 +-
blog/index.html | 2 +-
blog/long-blog-post/index.html | 2 +-
blog/mdx-blog-post/index.html | 2 +-
blog/tags/docusaurus/index.html | 2 +-
blog/tags/facebook/index.html | 2 +-
blog/tags/hello/index.html | 2 +-
blog/tags/hola/index.html | 2 +-
blog/tags/index.html | 2 +-
blog/welcome/index.html | 2 +-
.../index.html" | 2 +-
docs/homework/index.html | 2 +-
docs/intro/index.html | 44 ++++++++++++++-----
docs/lectures/agents/index.html | 2 +-
docs/lectures/alignment/index.html | 2 +-
docs/lectures/evaluation/index.html | 2 +-
docs/lectures/instruction-tuning/index.html | 2 +-
docs/lectures/lms/index.html | 2 +-
docs/lectures/long-context/index.html | 2 +-
docs/lectures/multimodal/index.html | 2 +-
docs/lectures/nn-basics/index.html | 2 +-
docs/lectures/poster/index.html | 2 +-
docs/lectures/presentation/index.html | 2 +-
.../lectures/prompting-engineering/index.html | 2 +-
docs/lectures/rag/index.html | 2 +-
docs/lectures/rm-rlhf/index.html | 2 +-
docs/lectures/transformers/index.html | 2 +-
docs/lectures/why-llms/index.html | 2 +-
docs/schedule/index.html | 4 +-
hw/intro/index.html | 2 +-
index.html | 2 +-
markdown-page/index.html | 2 +-
44 files changed, 145 insertions(+), 46 deletions(-)
create mode 100644 .idea/cs2916.iml
create mode 100644 .idea/inspectionProfiles/Project_Default.xml
create mode 100644 .idea/inspectionProfiles/profiles_settings.xml
create mode 100644 .idea/modules.xml
create mode 100644 .idea/vcs.xml
create mode 100644 .idea/workspace.xml
create mode 100644 assets/js/0e384e19.74b6af7d.js
create mode 100644 assets/js/38feca5b.beebb6e7.js
create mode 100644 assets/js/935f2afb.1775ec6b.js
create mode 100644 assets/js/runtime~main.b7bb073b.js
diff --git a/.idea/cs2916.iml b/.idea/cs2916.iml
new file mode 100644
index 0000000..d0876a7
--- /dev/null
+++ b/.idea/cs2916.iml
@@ -0,0 +1,8 @@
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/.idea/inspectionProfiles/Project_Default.xml b/.idea/inspectionProfiles/Project_Default.xml
new file mode 100644
index 0000000..03d9549
--- /dev/null
+++ b/.idea/inspectionProfiles/Project_Default.xml
@@ -0,0 +1,6 @@
+
+
+
+
+
+
\ No newline at end of file
diff --git a/.idea/inspectionProfiles/profiles_settings.xml b/.idea/inspectionProfiles/profiles_settings.xml
new file mode 100644
index 0000000..105ce2d
--- /dev/null
+++ b/.idea/inspectionProfiles/profiles_settings.xml
@@ -0,0 +1,6 @@
+
+
+
+
+
+
\ No newline at end of file
diff --git a/.idea/modules.xml b/.idea/modules.xml
new file mode 100644
index 0000000..3f99d7c
--- /dev/null
+++ b/.idea/modules.xml
@@ -0,0 +1,8 @@
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/.idea/vcs.xml b/.idea/vcs.xml
new file mode 100644
index 0000000..35eb1dd
--- /dev/null
+++ b/.idea/vcs.xml
@@ -0,0 +1,6 @@
+
+
+
+
+
+
\ No newline at end of file
diff --git a/.idea/workspace.xml b/.idea/workspace.xml
new file mode 100644
index 0000000..2e3f98c
--- /dev/null
+++ b/.idea/workspace.xml
@@ -0,0 +1,41 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ 1708400635134
+
+
+ 1708400635134
+
+
+
+
+
\ No newline at end of file
diff --git a/404.html b/404.html
index 43176e0..a64d567 100644
--- a/404.html
+++ b/404.html
@@ -5,7 +5,7 @@
Page Not Found | 大语言模型(Large Language Models)
-
+
diff --git a/assets/js/0e384e19.74b6af7d.js b/assets/js/0e384e19.74b6af7d.js
new file mode 100644
index 0000000..ff5bd05
--- /dev/null
+++ b/assets/js/0e384e19.74b6af7d.js
@@ -0,0 +1 @@
+"use strict";(self.webpackChunkmy_website=self.webpackChunkmy_website||[]).push([[3976],{1512:(e,n,i)=>{i.r(n),i.d(n,{assets:()=>h,contentTitle:()=>r,default:()=>o,frontMatter:()=>t,metadata:()=>c,toc:()=>a});var s=i(4848),l=i(8453);const t={sidebar_position:1},r="\u8bfe\u7a0b\u4ecb\u7ecd",c={id:"intro",title:"\u8bfe\u7a0b\u4ecb\u7ecd",description:"\u65f6\u95f4/\u5730\u70b9",source:"@site/docs/intro.md",sourceDirName:".",slug:"/intro",permalink:"/cs2916/docs/intro",draft:!1,unlisted:!1,editUrl:"https://github.com/facebook/docusaurus/tree/main/packages/create-docusaurus/templates/shared/docs/intro.md",tags:[],version:"current",sidebarPosition:1,frontMatter:{sidebar_position:1},sidebar:"tutorialSidebar",next:{title:"\u8bfe\u7a0b\u5927\u7eb2",permalink:"/cs2916/docs/category/\u8bfe\u7a0b\u5927\u7eb2"}},h={},a=[{value:"\u65f6\u95f4/\u5730\u70b9",id:"\u65f6\u95f4\u5730\u70b9",level:2},{value:"Instructors/TAs",id:"instructorstas",level:2},{value:"Instructor",id:"instructor",level:4},{value:"TAs",id:"tas",level:4},{value:"Guest Lecturers",id:"guest-lecturers",level:4},{value:"\u5f00\u8bbe\u80cc\u666f",id:"\u5f00\u8bbe\u80cc\u666f",level:2},{value:"\u8bfe\u7a0b\u5f62\u5f0f\u4e0e\u6253\u5206",id:"\u8bfe\u7a0b\u5f62\u5f0f\u4e0e\u6253\u5206",level:2}];function d(e){const n={a:"a",h1:"h1",h2:"h2",h4:"h4",li:"li",p:"p",ul:"ul",...(0,l.R)(),...e.components};return(0,s.jsxs)(s.Fragment,{children:[(0,s.jsx)(n.h1,{id:"\u8bfe\u7a0b\u4ecb\u7ecd",children:"\u8bfe\u7a0b\u4ecb\u7ecd"}),"\n",(0,s.jsx)(n.h2,{id:"\u65f6\u95f4\u5730\u70b9",children:"\u65f6\u95f4/\u5730\u70b9"}),"\n",(0,s.jsxs)(n.ul,{children:["\n",(0,s.jsx)(n.li,{children:"CS 2916"}),"\n",(0,s.jsx)(n.li,{children:"\u6bcf\u5468\u56db18:00 - 20:25 (\u6bcf\u5468\u4e09\u8bfe\u65f6)"}),"\n",(0,s.jsx)(n.li,{children:"\u8ba1\u7b97\u673a\u79d1\u5b66\u4e0e\u6280\u672f\uff08\u81f4\u8fdc\u8363\u8a89\u8ba1\u5212\uff09ACM\u73ed"}),"\n",(0,s.jsx)(n.li,{children:"\u4e0a\u6d77\u4ea4\u901a\u5927\u5b66 \u95f5\u884c \u4e1c\u4e2d\u96622-403"}),"\n"]}),"\n",(0,s.jsx)(n.h2,{id:"instructorstas",children:"Instructors/TAs"}),"\n",(0,s.jsx)(n.h4,{id:"instructor",children:"Instructor"}),"\n",(0,s.jsxs)(n.ul,{children:["\n",(0,s.jsxs)(n.li,{children:[(0,s.jsx)(n.a,{href:"https://plms.ai/",children:"\u5218\u9e4f\u98de"})," (",(0,s.jsx)(n.a,{href:"mailto:pengfei@sjtu.edu.cn",children:"pengfei@sjtu.edu.cn"}),")"]}),"\n"]}),"\n",(0,s.jsx)(n.h4,{id:"tas",children:"TAs"}),"\n",(0,s.jsxs)(n.ul,{children:["\n",(0,s.jsxs)(n.li,{children:[(0,s.jsx)(n.a,{href:"https://ethanc111.github.io/",children:"\u9648\u5955\u7fa4"})," (",(0,s.jsx)(n.a,{href:"mailto:ethanicchern@gmail.com",children:"ethanicchern@gmail.com"}),")"]}),"\n",(0,s.jsxs)(n.li,{children:[(0,s.jsx)(n.a,{href:"https://koalazf99.github.io/",children:"\u5468\u51e1"})," (",(0,s.jsx)(n.a,{href:"mailto:koala99.zf@gmail.com",children:"koala99.zf@gmail.com"}),")"]}),"\n",(0,s.jsxs)(n.li,{children:[(0,s.jsx)(n.a,{href:"https://plms.ai/people/index.html",children:"\u5218\u4e00\u79c0"})," (",(0,s.jsx)(n.a,{href:"mailto:1770418133@qq.com",children:"1770418133@qq.com"}),")"]}),"\n",(0,s.jsxs)(n.li,{children:[(0,s.jsx)(n.a,{href:"https://plms.ai/people/index.html",children:"\u590f\u4e16\u6770"})," (",(0,s.jsx)(n.a,{href:"mailto:xiasj20@fudan.edu.cn",children:"xiasj20@fudan.edu.cn"}),")"]}),"\n",(0,s.jsxs)(n.li,{children:[(0,s.jsx)(n.a,{href:"https://plms.ai/people/index.html",children:"\u674e\u5b66\u5cf0"})," (",(0,s.jsx)(n.a,{href:"mailto:xuefengli0301@gmail.com",children:"xuefengli0301@gmail.com"}),")"]}),"\n"]}),"\n",(0,s.jsx)(n.h4,{id:"guest-lecturers",children:"Guest Lecturers"}),"\n",(0,s.jsxs)(n.ul,{children:["\n",(0,s.jsxs)(n.li,{children:[(0,s.jsx)(n.a,{href:"https://xpqiu.github.io/",children:"\u90b1\u9521\u9e4f"})," (\u590d\u65e6\u5927\u5b66\u6559\u6388\uff0c\u4e0a\u6d77\u9ad8\u6821\u9752\u5e74\u6559\u5e08\u6559\u5b66\u7ade\u8d5b\u4f18\u7b49\u5956\uff0c\u8457\u4f5c\u300a\u795e\u7ecf\u7f51\u7edc\u4e0e\u6df1\u5ea6\u5b66\u4e60\u300b\uff0cMOSS\u5927\u6a21\u578b\u9886\u5bfc\u8005)"]}),"\n",(0,s.jsxs)(n.li,{children:[(0,s.jsx)(n.a,{href:"https://ma.sjtu.edu.cn/info/1196/3388.htm",children:"\u95eb\u5b8f\u79c0"}),"\uff08\u4e0a\u6d77\u4ea4\u901a\u5927\u5b66\u6559\u6388\uff0c\u4e3b\u8981\u7814\u7a76\u65b9\u5411\uff1a\u6280\u672f\u54f2\u5b66\u3001\u6570\u636e\u4f26\u7406\u3001\u5927\u6a21\u578b\u5b89\u5168\u5bf9\u9f50\uff09"]}),"\n",(0,s.jsxs)(n.li,{children:[(0,s.jsx)(n.a,{href:"http://www.fudan-disc.com/people/zywei",children:"\u9b4f\u5fe0\u94b0"})," (\u590d\u65e6\u5927\u5b66\u6570\u636e\u667a\u80fd\u4e0e\u793e\u4f1a\u8ba1\u7b97\u5b9e\u9a8c\u5ba4\u8d1f\u8d23\u4eba\uff0c\u4e0a\u6d77\u5e02\u9752\u5e74\u6559\u5e08\u6559\u5b66\u6bd4\u8d5b\u4f18\u79c0\u5956\uff0c\u4e3b\u8981\u7814\u7a76\u65b9\u5411\uff1a\u591a\u6a21\u6001\u667a\u80fd\u4ea4\u4e92)"]}),"\n",(0,s.jsxs)(n.li,{children:[(0,s.jsx)(n.a,{href:"https://scholar.google.com/citations?user=yigHzW8AAAAJ&hl=en",children:"\u989c\u822a"})," \uff08\u6d66\u6c5f\u56fd\u5bb6\u5b9e\u9a8c\u5ba4\u9752\u5e74\u7814\u7a76\u5458\uff0c\u6d66\u8bed\u5927\u6a21\u578bInternLM\u6838\u5fc3\u5b8c\u6210\u4eba\uff09"]}),"\n"]}),"\n",(0,s.jsx)(n.h2,{id:"\u5f00\u8bbe\u80cc\u666f",children:"\u5f00\u8bbe\u80cc\u666f"}),"\n",(0,s.jsx)(n.p,{children:"\u5927\u8bed\u8a00\u6a21\u578b\uff08Large Language Models\uff09\u6280\u672f\u642d\u914d\u63d0\u793a\u5b66\u4e60\u91cd\u65b0\u5b9a\u4e86\u4eba\u5de5\u667a\u80fd\u5b66\u4e60\u7684\u5efa\u6a21\u8303\u5f0f\u548c\u4eba\u5de5\u4ea4\u4e92\u65b9\u5f0f\u3002 \u4ee5ChatGPT\u4e3a\u4ee3\u8868\u7684\u4ea7\u54c1\u7684\u51fa\u73b0\u5f15\u8d77\u4e86\u5404\u754c\u5e7f\u6cdb\u7684\u5173\u6ce8\u548c\u5174\u8da3\uff0c\u4f7f\u5f97\u56fd\u5185\u5916\u673a\u6784\u90fd\u5728\u5c1d\u8bd5\u8fdb\u884c\u76f8\u5173\u6280\u672f\u79ef\u7d2f\u5de5\u4f5c\u3002\u4ee5\u5927\u8bed\u8a00\u6a21\u578b\u4e3a\u6838\u5fc3\u7684\u751f\u6210\u5f0f\u4eba\u5de5\u667a\u80fd\u6280\u672f\u7684\u51fa\u73b0\uff0c\u5728\u4e0d\u540c\u9886\u57df\u3001\u4e0d\u540c\u65b9\u9762\u5e26\u6765\u7ed3\u6784\u6027\u7684\u53d8\u9769\u3002\n\u4ee5\u81ea\u7136\u8bed\u8a00\u65b9\u5411\u7814\u7a76\u4e3a\u4f8b\uff0c\u4f20\u7edf\u4efb\u52a1\u5efa\u6a21\u8303\u5f0f\u53d1\u751f\u4e86\u5de8\u5927\u7684\u6539\u53d8\uff0c\u8fd9\u79cd\u4efb\u52a1\u5efa\u6a21\u8303\u5f0f\u7684\u8f6c\u53d8\u5e26\u6765\u4e86\u79d1\u7814\u8303\u5f0f\u7684\u8f6c\u53d8\uff0c\u9010\u6e10\u5f62\u6210\u4ee5\u5927\u8bed\u8a00\u6a21\u578b\u4e3a\u6838\u5fc3\u7684\u7814\u7a76\u6a21\u5f0f\uff0c\u7136\u800c\u4ee5\u5927\u8bed\u8a00\u6a21\u578b\u4e3a\u6838\u5fc3\u7684\u6280\u672f\u6d89\u53ca\u77e5\u8bc6\u70b9\u591a\uff0c\u8fed\u4ee3\u5feb\uff0c\u9020\u6210\u4e86\u9ad8\u6821\u8bfe\u7a0b\u6559\u80b2\u548c\u4ea7\u4e1a\u6280\u672f\u9700\u6c42\u7684\u4e0d\u5339\u914d\uff0c\n\u5728\u56fd\u9645\u4e0a\uff0c\u4e3a\u4e86\u5e94\u5bf9\u8fd9\u4e2a\u95ee\u9898\uff0c\u65af\u5766\u798f\u548c\u5361\u5185\u57fa\u6885\u9686\u5927\u5b66\u4f18\u5148\u5f00\u8bbe\u4e86\u76f8\u5e94\u7684\u8bfe\u7a0b:"}),"\n",(0,s.jsxs)(n.ul,{children:["\n",(0,s.jsx)(n.li,{children:"\u65af\u5766\u798f\u8ba1\u7b97\u673a\u7cfb\u57282023\u5e74\u589e\u8bbe\u4e86cs324 \uff08large language models\uff0c\u5927\u8bed\u8a00\u6a21\u578b\uff09"}),"\n",(0,s.jsx)(n.li,{children:"\u5361\u8010\u57fa\u6885\u9686\u5927\u5b66\u4e5f\u57282023\u5e74\u65b0\u589e\u4e86\u8bfe\u7a0b11-667 (Large Language Models Methods and Applications\uff0c\u5927\u8bed\u8a00\u6a21\u578b\u7684\u65b9\u6cd5\u548c\u5e94\u7528)"}),"\n"]}),"\n",(0,s.jsx)(n.p,{children:"\u56fd\u5185\u76ee\u524d\u8fd8\u6ca1\u6709\u975e\u5e38\u7cfb\u7edf\u7684\u8bfe\u7a0b\uff0c\u8fd9\u91cc\u65e8\u5728\u5f00\u8bbe\u4e00\u4e2a \u201c\u5927\u8bed\u8a00\u6a21\u578b\u201d\u7684\u8bfe\u7a0b\uff0c\u901a\u8fc7\u5b66\u4e60\u8fd9\u95e8\u8bfe\u7a0b\uff0c\u5b66\u751f\u5c06\u80fd\u591f\u53ca\u65f6\u4e86\u89e3\u5e76\u6df1\u5165\u7814\u7a76\u8fd9\u4e00\u9886\u57df\u7684\u6700\u65b0\u8fdb\u5c55\u3002\u6709\u52a9\u4e8e\u5728\u672a\u6765\u7684\u804c\u4e1a\u751f\u6daf\u4e2d\u4fdd\u6301\u7ade\u4e89\u529b\u3002\u5927\u9884\u8bad\u7ec3\u8bed\u8a00\u6a21\u578b\u6280\u672f\u5df2\u7ecf\u5f15\u53d1\u4e86\u6280\u672f\u9769\u547d\uff0c\u5bf9\u81ea\u7136\u8bed\u8a00\u5904\u7406\u3001\u673a\u5668\u7ffb\u8bd1\u3001\u81ea\u52a8\u6587\u672c\u751f\u6210\u7b49\u9886\u57df\u4ea7\u751f\u4e86\u6df1\u8fdc\u5f71\u54cd\u3002\u672c\u8bfe\u7a0b\u5c06\u5e2e\u52a9\u5b66\u751f\u7406\u89e3\u8fd9\u4e00\u9769\u547d\u7684\u672c\u8d28\u3001\u5386\u53f2\u548c\u672a\u6765\u53d1\u5c55\uff0c\u4e3a\u4ed6\u4eec\u5728\u76f8\u5173\u9886\u57df\u7684\u5de5\u4f5c\u505a\u597d\u51c6\u5907\u3002"}),"\n",(0,s.jsx)(n.h2,{id:"\u8bfe\u7a0b\u5f62\u5f0f\u4e0e\u6253\u5206",children:"\u8bfe\u7a0b\u5f62\u5f0f\u4e0e\u6253\u5206"}),"\n",(0,s.jsxs)(n.ul,{children:["\n",(0,s.jsx)(n.li,{children:"\u8be5\u8bfe\u7a0b\u6bcf\u4e2a\u7ae0\u8282\u90fd\u4f1a\u63a8\u8350\u4e00\u4e9b\u9605\u8bfb\u6750\u6599\uff0c\u6388\u8bfe\u5185\u5bb9\u4e5f\u4f1a\u56f4\u7ed5\u5176\u5c55\u5f00\uff0c\u5efa\u8bae\u63d0\u524d\u9605\u8bfb\uff1b"}),"\n",(0,s.jsx)(n.li,{children:"\u8bfe\u540e\u95ee\u9898\u8ba8\u8bba\u53ef\u4ee5\u901a\u8fc7Canvas\u8bba\u575b\u6216\u8005\u901a\u8fc7\u8bfe\u7a0b\u8ba8\u8bba\u5fae\u4fe1\u7fa4\u4e0e\u6388\u8bfe\u8001\u5e08\u548cTA\u4ea4\u6d41"}),"\n",(0,s.jsx)(n.li,{children:"\u8bfe\u7a0b\u4e2d\u4f1a\u7a7f\u63d2\u4e00\u4e9b\u4ee3\u7801\u5b9e\u8df5\u6307\u5bfc\uff0c\u4e5f\u4f1a\u9080\u8bf7\u4e0e\u8be5\u7ae0\u8282\u76f8\u5173\u7684\u56fd\u9645\u77e5\u540d\u7684\u5b66\u8005\u6765\u8fdb\u884c\u6388\u8bfe"}),"\n",(0,s.jsx)(n.li,{children:"\u8bfe\u7a0b\u4e00\u5171\u6709\u56db\u4e2a\u5c0f\u4f5c\u4e1a\uff0c\u6700\u7ec8\u8bfe\u7a0b\u6210\u7ee9\u5c06\u4f1a\u6839\u636e\u6743\u91cd\u786e\u5b9a\u5f97\u5206\uff1a\u8bfe\u7a0b\u4f5c\u4e1a1\uff0c2 \u5404\u536010%\uff0c\u4f5c\u4e1a3 \u5404\u536020%\uff0c\u8bfe\u7a0b\u4f5c\u4e1a4 \u536060%"}),"\n"]})]})}function o(e={}){const{wrapper:n}={...(0,l.R)(),...e.components};return n?(0,s.jsx)(n,{...e,children:(0,s.jsx)(d,{...e})}):d(e)}},8453:(e,n,i)=>{i.d(n,{R:()=>r,x:()=>c});var s=i(6540);const l={},t=s.createContext(l);function r(e){const n=s.useContext(t);return s.useMemo((function(){return"function"==typeof e?e(n):{...n,...e}}),[n,e])}function c(e){let n;return n=e.disableParentContext?"function"==typeof e.components?e.components(l):e.components||l:r(e.components),s.createElement(t.Provider,{value:n},e.children)}}}]);
\ No newline at end of file
diff --git a/assets/js/38feca5b.beebb6e7.js b/assets/js/38feca5b.beebb6e7.js
new file mode 100644
index 0000000..7fc4725
--- /dev/null
+++ b/assets/js/38feca5b.beebb6e7.js
@@ -0,0 +1 @@
+"use strict";(self.webpackChunkmy_website=self.webpackChunkmy_website||[]).push([[7252],{41:(e,t,d)=>{d.r(t),d.d(t,{assets:()=>c,contentTitle:()=>i,default:()=>j,frontMatter:()=>r,metadata:()=>h,toc:()=>l});var s=d(4848),n=d(8453);const r={sidebar_position:3},i="\u5b89\u6392\u8868",h={id:"schedule",title:"\u5b89\u6392\u8868",description:"|Week|Date |Content |Homework| Lecturer |",source:"@site/docs/schedule.md",sourceDirName:".",slug:"/schedule",permalink:"/cs2916/docs/schedule",draft:!1,unlisted:!1,editUrl:"https://github.com/facebook/docusaurus/tree/main/packages/create-docusaurus/templates/shared/docs/schedule.md",tags:[],version:"current",sidebarPosition:3,frontMatter:{sidebar_position:3},sidebar:"tutorialSidebar",previous:{title:"Poster",permalink:"/cs2916/docs/lectures/poster"},next:{title:"\u8bfe\u7a0b\u4f5c\u4e1a",permalink:"/cs2916/docs/homework"}},c={},l=[];function x(e){const t={a:"a",h1:"h1",table:"table",tbody:"tbody",td:"td",th:"th",thead:"thead",tr:"tr",...(0,n.R)(),...e.components};return(0,s.jsxs)(s.Fragment,{children:[(0,s.jsx)(t.h1,{id:"\u5b89\u6392\u8868",children:"\u5b89\u6392\u8868"}),"\n",(0,s.jsxs)(t.table,{children:[(0,s.jsx)(t.thead,{children:(0,s.jsxs)(t.tr,{children:[(0,s.jsx)(t.th,{children:"Week"}),(0,s.jsx)(t.th,{children:"Date"}),(0,s.jsx)(t.th,{children:"Content"}),(0,s.jsx)(t.th,{children:"Homework"}),(0,s.jsx)(t.th,{children:"Lecturer"})]})}),(0,s.jsxs)(t.tbody,{children:[(0,s.jsxs)(t.tr,{children:[(0,s.jsx)(t.td,{children:"1"}),(0,s.jsx)(t.td,{children:"2024/02/22"}),(0,s.jsx)(t.td,{children:"Why LLMs?"}),(0,s.jsx)(t.td,{children:"-"}),(0,s.jsx)(t.td,{children:(0,s.jsx)(t.a,{href:"https://plms.ai/",children:"Pengfei Liu"})})]}),(0,s.jsxs)(t.tr,{children:[(0,s.jsx)(t.td,{children:"2"}),(0,s.jsx)(t.td,{children:"2024/02/29"}),(0,s.jsx)(t.td,{children:"Neural Networks and Deep Learning Basics"}),(0,s.jsx)(t.td,{children:"-"}),(0,s.jsx)(t.td,{children:(0,s.jsx)(t.a,{href:"https://plms.ai/",children:"Pengfei Liu"})})]}),(0,s.jsxs)(t.tr,{children:[(0,s.jsx)(t.td,{children:"3"}),(0,s.jsx)(t.td,{children:"2024/03/07"}),(0,s.jsx)(t.td,{children:"Language Models and Representation Learning"}),(0,s.jsx)(t.td,{children:"\ud83d\udc4dhw1 out"}),(0,s.jsx)(t.td,{children:(0,s.jsx)(t.a,{href:"https://plms.ai/",children:"Pengfei Liu"})})]}),(0,s.jsxs)(t.tr,{children:[(0,s.jsx)(t.td,{children:"4"}),(0,s.jsx)(t.td,{children:"2024/03/14"}),(0,s.jsx)(t.td,{children:"Transformers and Pretrained Langauge Models"}),(0,s.jsx)(t.td,{children:"-"}),(0,s.jsx)(t.td,{children:(0,s.jsx)(t.a,{href:"https://xpqiu.github.io/en.html",children:"Xipeng Qiu"})})]}),(0,s.jsxs)(t.tr,{children:[(0,s.jsx)(t.td,{children:"5"}),(0,s.jsx)(t.td,{children:"2024/03/21"}),(0,s.jsx)(t.td,{children:"Prompting Engineering"}),(0,s.jsx)(t.td,{children:"-"}),(0,s.jsx)(t.td,{children:(0,s.jsx)(t.a,{href:"https://plms.ai/",children:"Pengfei Liu"})})]}),(0,s.jsxs)(t.tr,{children:[(0,s.jsx)(t.td,{children:"6"}),(0,s.jsx)(t.td,{children:"2024/03/28"}),(0,s.jsx)(t.td,{children:"Evaluation"}),(0,s.jsx)(t.td,{children:"\ud83d\udc4dhw2 out, hw1 due"}),(0,s.jsx)(t.td,{children:(0,s.jsx)(t.a,{href:"https://plms.ai/",children:"Pengfei Liu"})})]}),(0,s.jsxs)(t.tr,{children:[(0,s.jsx)(t.td,{children:"7"}),(0,s.jsx)(t.td,{children:"2024/04/04"}),(0,s.jsx)(t.td,{children:"Qingming Festival"}),(0,s.jsx)(t.td,{children:"-"}),(0,s.jsx)(t.td,{children:"-"})]}),(0,s.jsxs)(t.tr,{children:[(0,s.jsx)(t.td,{children:"8"}),(0,s.jsx)(t.td,{children:"2024/04/11"}),(0,s.jsx)(t.td,{children:"Supervised Finetuning and Instruction Tuning"}),(0,s.jsx)(t.td,{children:"-"}),(0,s.jsxs)(t.td,{children:[(0,s.jsx)(t.a,{href:"https://scholar.google.com/citations?user=yigHzW8AAAAJ&hl=en",children:"Hang Yan"}),", ",(0,s.jsx)(t.a,{href:"https://plms.ai/",children:"Pengfei Liu"})]})]}),(0,s.jsxs)(t.tr,{children:[(0,s.jsx)(t.td,{children:"9"}),(0,s.jsx)(t.td,{children:"2024/04/18"}),(0,s.jsx)(t.td,{children:"Reward Model and RLHF"}),(0,s.jsx)(t.td,{children:"-"}),(0,s.jsx)(t.td,{children:(0,s.jsx)(t.a,{href:"https://plms.ai/",children:"Pengfei Liu"})})]}),(0,s.jsxs)(t.tr,{children:[(0,s.jsx)(t.td,{children:"10"}),(0,s.jsx)(t.td,{children:"2024/04/25"}),(0,s.jsx)(t.td,{children:"Alignment and AI Safety"}),(0,s.jsx)(t.td,{children:"\ud83d\udc4dhw2 due, hw3,4 out"}),(0,s.jsxs)(t.td,{children:[(0,s.jsx)(t.a,{href:"https://ma.sjtu.edu.cn/info/1196/3388.htm",children:"Hongxiu Yan"}),", ",(0,s.jsx)(t.a,{href:"https://plms.ai/",children:"Pengfei Liu"})]})]}),(0,s.jsxs)(t.tr,{children:[(0,s.jsx)(t.td,{children:"11"}),(0,s.jsx)(t.td,{children:"2024/05/02"}),(0,s.jsx)(t.td,{children:"Multi-modal LLM"}),(0,s.jsx)(t.td,{children:"-"}),(0,s.jsxs)(t.td,{children:[(0,s.jsx)(t.a,{href:"http://www.fudan-disc.com/people/zywei",children:"Zhongyu Wei"}),", ",(0,s.jsx)(t.a,{href:"https://plms.ai/",children:"Pengfei Liu"})]})]}),(0,s.jsxs)(t.tr,{children:[(0,s.jsx)(t.td,{children:"12"}),(0,s.jsx)(t.td,{children:"2024/05/09"}),(0,s.jsx)(t.td,{children:"Agents"}),(0,s.jsx)(t.td,{children:"-"}),(0,s.jsx)(t.td,{children:"-"})]}),(0,s.jsxs)(t.tr,{children:[(0,s.jsx)(t.td,{children:"13"}),(0,s.jsx)(t.td,{children:"2024/05/16"}),(0,s.jsx)(t.td,{children:"Long-context LLM"}),(0,s.jsx)(t.td,{}),(0,s.jsx)(t.td,{children:(0,s.jsx)(t.a,{href:"https://plms.ai/",children:"Pengfei Liu"})})]}),(0,s.jsxs)(t.tr,{children:[(0,s.jsx)(t.td,{children:"14"}),(0,s.jsx)(t.td,{children:"2024/05/23"}),(0,s.jsx)(t.td,{children:"Retrieval Augmented Generation"}),(0,s.jsx)(t.td,{children:"\ud83d\udc4dhw3 due"}),(0,s.jsx)(t.td,{children:(0,s.jsx)(t.a,{href:"https://plms.ai/",children:"Pengfei Liu"})})]}),(0,s.jsxs)(t.tr,{children:[(0,s.jsx)(t.td,{children:"15"}),(0,s.jsx)(t.td,{children:"2024/05/30"}),(0,s.jsx)(t.td,{children:"Presentation"}),(0,s.jsx)(t.td,{children:"-"}),(0,s.jsx)(t.td,{children:"-"})]}),(0,s.jsxs)(t.tr,{children:[(0,s.jsx)(t.td,{children:"16"}),(0,s.jsx)(t.td,{children:"2024/06/06"}),(0,s.jsx)(t.td,{children:"Presentation"}),(0,s.jsx)(t.td,{children:"-"}),(0,s.jsx)(t.td,{children:"-"})]}),(0,s.jsxs)(t.tr,{children:[(0,s.jsx)(t.td,{children:"17"}),(0,s.jsx)(t.td,{children:"2024/06/13"}),(0,s.jsx)(t.td,{children:"Poster"}),(0,s.jsx)(t.td,{children:"\ud83d\udc4dhw4 due"}),(0,s.jsx)(t.td,{children:"-"})]})]})]})]})}function j(e={}){const{wrapper:t}={...(0,n.R)(),...e.components};return t?(0,s.jsx)(t,{...e,children:(0,s.jsx)(x,{...e})}):x(e)}},8453:(e,t,d)=>{d.d(t,{R:()=>i,x:()=>h});var s=d(6540);const n={},r=s.createContext(n);function i(e){const t=s.useContext(r);return s.useMemo((function(){return"function"==typeof e?e(t):{...t,...e}}),[t,e])}function h(e){let t;return t=e.disableParentContext?"function"==typeof e.components?e.components(n):e.components||n:i(e.components),s.createElement(r.Provider,{value:t},e.children)}}}]);
\ No newline at end of file
diff --git a/assets/js/935f2afb.1775ec6b.js b/assets/js/935f2afb.1775ec6b.js
new file mode 100644
index 0000000..12e5815
--- /dev/null
+++ b/assets/js/935f2afb.1775ec6b.js
@@ -0,0 +1 @@
+"use strict";(self.webpackChunkmy_website=self.webpackChunkmy_website||[]).push([[8581],{5610:e=>{e.exports=JSON.parse('{"pluginId":"default","version":"current","label":"Next","banner":null,"badge":false,"noIndex":false,"className":"docs-version-current","isLast":true,"docsSidebars":{"tutorialSidebar":[{"type":"link","label":"\u8bfe\u7a0b\u4ecb\u7ecd","href":"/cs2916/docs/intro","docId":"intro","unlisted":false},{"type":"category","label":"\u8bfe\u7a0b\u5927\u7eb2","collapsible":true,"collapsed":true,"items":[{"type":"link","label":"Why LLMs?","href":"/cs2916/docs/lectures/why-llms","docId":"lectures/why-llms","unlisted":false},{"type":"link","label":"Neural networks and deep learning basics","href":"/cs2916/docs/lectures/nn-basics","docId":"lectures/nn-basics","unlisted":false},{"type":"link","label":"Language Models and Representation Learning","href":"/cs2916/docs/lectures/lms","docId":"lectures/lms","unlisted":false},{"type":"link","label":"Transformers and Pretrained Langauge Models","href":"/cs2916/docs/lectures/transformers","docId":"lectures/transformers","unlisted":false},{"type":"link","label":"Prompting Engineering","href":"/cs2916/docs/lectures/prompting-engineering","docId":"lectures/prompting-engineering","unlisted":false},{"type":"link","label":"Evaluation","href":"/cs2916/docs/lectures/evaluation","docId":"lectures/evaluation","unlisted":false},{"type":"link","label":"Supervised Finetuning and Instruction Tuning","href":"/cs2916/docs/lectures/instruction-tuning","docId":"lectures/instruction-tuning","unlisted":false},{"type":"link","label":"Reward Model and RLHF","href":"/cs2916/docs/lectures/rm-rlhf","docId":"lectures/rm-rlhf","unlisted":false},{"type":"link","label":"Alignment and AI Safety","href":"/cs2916/docs/lectures/alignment","docId":"lectures/alignment","unlisted":false},{"type":"link","label":"Retrieval Augmented Generation","href":"/cs2916/docs/lectures/rag","docId":"lectures/rag","unlisted":false},{"type":"link","label":"Agents","href":"/cs2916/docs/lectures/agents","docId":"lectures/agents","unlisted":false},{"type":"link","label":"Long-context LLM","href":"/cs2916/docs/lectures/long-context","docId":"lectures/long-context","unlisted":false},{"type":"link","label":"Multi-modal LLM","href":"/cs2916/docs/lectures/multimodal","docId":"lectures/multimodal","unlisted":false},{"type":"link","label":"Presentation","href":"/cs2916/docs/lectures/presentation","docId":"lectures/presentation","unlisted":false},{"type":"link","label":"Presentation","href":"/cs2916/docs/lectures/presentation","docId":"lectures/presentation","unlisted":false},{"type":"link","label":"Poster","href":"/cs2916/docs/lectures/poster","docId":"lectures/poster","unlisted":false}],"href":"/cs2916/docs/category/\u8bfe\u7a0b\u5927\u7eb2"},{"type":"link","label":"\u5b89\u6392\u8868","href":"/cs2916/docs/schedule","docId":"schedule","unlisted":false},{"type":"link","label":"\u8bfe\u7a0b\u4f5c\u4e1a","href":"/cs2916/docs/homework","docId":"homework","unlisted":false}]},"docs":{"homework":{"id":"homework","title":"\u8bfe\u7a0b\u4f5c\u4e1a","description":"\u4f5c\u4e1a\u8bbe\u8ba1\u7684\u76ee\u7684\u548c\u7406\u5ff5\u4e3b\u8981\u53c2\u8003CMU CS11747\u8bfe\u7a0b\u3002\u4e0d\u4ec5\u7406\u89e3\u5173\u4e8e\u5927\u6a21\u578b\u76f8\u5173\u7684\u91cd\u8981\u6982\u5ff5\uff0c\u8fd8\u80fd\u5b9e\u73b0\u4e00\u4e9b\u91cd\u8981\u6280\u672f\uff0c\u5e76\u4e14\u57f9\u517b","sidebar":"tutorialSidebar"},"intro":{"id":"intro","title":"\u8bfe\u7a0b\u4ecb\u7ecd","description":"\u65f6\u95f4/\u5730\u70b9","sidebar":"tutorialSidebar"},"lectures/agents":{"id":"lectures/agents","title":"Agents","description":"Outline","sidebar":"tutorialSidebar"},"lectures/alignment":{"id":"lectures/alignment","title":"Alignment and AI Safety","description":"Outline","sidebar":"tutorialSidebar"},"lectures/evaluation":{"id":"lectures/evaluation","title":"Evaluation","description":"Outline","sidebar":"tutorialSidebar"},"lectures/instruction-tuning":{"id":"lectures/instruction-tuning","title":"Supervised Finetuning and Instruction Tuning","description":"Outline","sidebar":"tutorialSidebar"},"lectures/lms":{"id":"lectures/lms","title":"Language Models and Representation Learning","description":"Outline","sidebar":"tutorialSidebar"},"lectures/long-context":{"id":"lectures/long-context","title":"Long-context LLM","description":"Outline","sidebar":"tutorialSidebar"},"lectures/multimodal":{"id":"lectures/multimodal","title":"Multi-modal LLM","description":"Outline","sidebar":"tutorialSidebar"},"lectures/nn-basics":{"id":"lectures/nn-basics","title":"Neural networks and deep learning basics","description":"Outline","sidebar":"tutorialSidebar"},"lectures/poster":{"id":"lectures/poster","title":"Poster","description":"Recommended Material","sidebar":"tutorialSidebar"},"lectures/presentation":{"id":"lectures/presentation","title":"Presentation","description":"Recommended Material","sidebar":"tutorialSidebar"},"lectures/prompting-engineering":{"id":"lectures/prompting-engineering","title":"Prompting Engineering","description":"Outline","sidebar":"tutorialSidebar"},"lectures/rag":{"id":"lectures/rag","title":"Retrieval Augmented Generation","description":"Outline","sidebar":"tutorialSidebar"},"lectures/rm-rlhf":{"id":"lectures/rm-rlhf","title":"Reward Model and RLHF","description":"Outline","sidebar":"tutorialSidebar"},"lectures/transformers":{"id":"lectures/transformers","title":"Transformers and Pretrained Langauge Models","description":"Outline","sidebar":"tutorialSidebar"},"lectures/why-llms":{"id":"lectures/why-llms","title":"Why LLMs?","description":"Outline","sidebar":"tutorialSidebar"},"schedule":{"id":"schedule","title":"\u5b89\u6392\u8868","description":"|Week|Date |Content |Homework| Lecturer |","sidebar":"tutorialSidebar"}}}')}}]);
\ No newline at end of file
diff --git a/assets/js/runtime~main.b7bb073b.js b/assets/js/runtime~main.b7bb073b.js
new file mode 100644
index 0000000..b6d1919
--- /dev/null
+++ b/assets/js/runtime~main.b7bb073b.js
@@ -0,0 +1 @@
+(()=>{"use strict";var e,a,c,f,t,r={},b={};function d(e){var a=b[e];if(void 0!==a)return a.exports;var c=b[e]={id:e,loaded:!1,exports:{}};return r[e].call(c.exports,c,c.exports,d),c.loaded=!0,c.exports}d.m=r,d.c=b,e=[],d.O=(a,c,f,t)=>{if(!c){var r=1/0;for(i=0;i=t)&&Object.keys(d.O).every((e=>d.O[e](c[o])))?c.splice(o--,1):(b=!1,t0&&e[i-1][2]>t;i--)e[i]=e[i-1];e[i]=[c,f,t]},d.n=e=>{var a=e&&e.__esModule?()=>e.default:()=>e;return d.d(a,{a:a}),a},c=Object.getPrototypeOf?e=>Object.getPrototypeOf(e):e=>e.__proto__,d.t=function(e,f){if(1&f&&(e=this(e)),8&f)return e;if("object"==typeof e&&e){if(4&f&&e.__esModule)return e;if(16&f&&"function"==typeof e.then)return e}var t=Object.create(null);d.r(t);var r={};a=a||[null,c({}),c([]),c(c)];for(var b=2&f&&e;"object"==typeof b&&!~a.indexOf(b);b=c(b))Object.getOwnPropertyNames(b).forEach((a=>r[a]=()=>e[a]));return r.default=()=>e,d.d(t,r),t},d.d=(e,a)=>{for(var c in a)d.o(a,c)&&!d.o(e,c)&&Object.defineProperty(e,c,{enumerable:!0,get:a[c]})},d.f={},d.e=e=>Promise.all(Object.keys(d.f).reduce(((a,c)=>(d.f[c](e,a),a)),[])),d.u=e=>"assets/js/"+({1451:"04754ec0",1581:"4bf23fba",1697:"98d3bd04",1775:"d41ed5cf",1912:"b17b9b9e",1972:"73664a40",2324:"914e89c0",2532:"9103250a",2568:"42256e30",2634:"c4f5d8e4",2711:"9e4087bc",2731:"6c62225f",2988:"a8050b87",3171:"5df0f483",3249:"ccc49370",3429:"cb08307a",3637:"f4f34a3a",3694:"8717b14a",3903:"7c7f3a5f",3976:"0e384e19",4134:"393be207",4298:"4bfae872",4507:"1e57fe0e",4601:"ccdec9a2",4608:"3ee820a1",4785:"27620256",4813:"6875c492",4949:"4584b7f0",4963:"847d4dbc",5267:"721798f6",5557:"d9f32620",6052:"758272e9",6061:"1f391b9e",6139:"9cb9e592",6321:"a2189d2e",6324:"8d30b3c2",6956:"b62a5960",6969:"14eb3368",7098:"a7bd4aaa",7123:"0db292d5",7198:"384c8388",7252:"38feca5b",7472:"814f3328",7643:"a6aa9e1f",7817:"ab3eb4e2",7997:"34f2080c",8043:"d60eb856",8086:"2b30cce5",8209:"01a85c17",8328:"7513c53f",8401:"17896441",8581:"935f2afb",8609:"925b3f96",8737:"7661071f",9048:"a94703ab",9325:"59362658",9328:"e273c56f",9647:"5e95c892"}[e]||e)+"."+{1451:"31983918",1581:"099ef2a2",1697:"9ca942c4",1775:"0d3211f3",1912:"bb6a5f8c",1972:"3581b3d5",2237:"9f327e60",2324:"aee94c66",2532:"f180362d",2568:"76bc473f",2634:"ad1a2a1f",2711:"dfabb06b",2731:"fc67a006",2988:"f439063c",3171:"341541f7",3249:"e7a3b8d3",3429:"da707d90",3637:"87679e27",3694:"6388ae25",3903:"274490ea",3976:"74b6af7d",4134:"443994f8",4298:"dd8bcfe1",4507:"9a389c13",4601:"712f28b4",4608:"e4b99084",4785:"ce6c68f7",4813:"ebebfc27",4949:"5d5b2d2f",4963:"52b48f4c",5267:"4daebcd2",5533:"c717b762",5557:"1807ef37",6052:"0725c796",6061:"df3efc6a",6139:"ea57ba76",6321:"15d622d1",6324:"a1eedaa7",6956:"155f5abf",6969:"091afeae",7098:"ad7f231a",7123:"6240c859",7198:"4defab78",7252:"beebb6e7",7472:"2491a76d",7643:"249e747a",7817:"e019a913",7997:"9d980d4b",8043:"44631499",8086:"2e3a0066",8209:"deb72329",8328:"5e1f21dd",8401:"9749c064",8581:"1775ec6b",8609:"71388d94",8737:"3a8d6dc7",8747:"a256fe95",9048:"025ff6ec",9325:"9858f974",9328:"9f99607a",9647:"d2840d6b"}[e]+".js",d.miniCssF=e=>{},d.g=function(){if("object"==typeof globalThis)return globalThis;try{return this||new Function("return this")()}catch(e){if("object"==typeof window)return window}}(),d.o=(e,a)=>Object.prototype.hasOwnProperty.call(e,a),f={},t="my-website:",d.l=(e,a,c,r)=>{if(f[e])f[e].push(a);else{var b,o;if(void 0!==c)for(var n=document.getElementsByTagName("script"),i=0;i{b.onerror=b.onload=null,clearTimeout(s);var t=f[e];if(delete f[e],b.parentNode&&b.parentNode.removeChild(b),t&&t.forEach((e=>e(c))),a)return a(c)},s=setTimeout(l.bind(null,void 0,{type:"timeout",target:b}),12e4);b.onerror=l.bind(null,b.onerror),b.onload=l.bind(null,b.onload),o&&document.head.appendChild(b)}},d.r=e=>{"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(e,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(e,"__esModule",{value:!0})},d.p="/cs2916/",d.gca=function(e){return e={17896441:"8401",27620256:"4785",59362658:"9325","04754ec0":"1451","4bf23fba":"1581","98d3bd04":"1697",d41ed5cf:"1775",b17b9b9e:"1912","73664a40":"1972","914e89c0":"2324","9103250a":"2532","42256e30":"2568",c4f5d8e4:"2634","9e4087bc":"2711","6c62225f":"2731",a8050b87:"2988","5df0f483":"3171",ccc49370:"3249",cb08307a:"3429",f4f34a3a:"3637","8717b14a":"3694","7c7f3a5f":"3903","0e384e19":"3976","393be207":"4134","4bfae872":"4298","1e57fe0e":"4507",ccdec9a2:"4601","3ee820a1":"4608","6875c492":"4813","4584b7f0":"4949","847d4dbc":"4963","721798f6":"5267",d9f32620:"5557","758272e9":"6052","1f391b9e":"6061","9cb9e592":"6139",a2189d2e:"6321","8d30b3c2":"6324",b62a5960:"6956","14eb3368":"6969",a7bd4aaa:"7098","0db292d5":"7123","384c8388":"7198","38feca5b":"7252","814f3328":"7472",a6aa9e1f:"7643",ab3eb4e2:"7817","34f2080c":"7997",d60eb856:"8043","2b30cce5":"8086","01a85c17":"8209","7513c53f":"8328","935f2afb":"8581","925b3f96":"8609","7661071f":"8737",a94703ab:"9048",e273c56f:"9328","5e95c892":"9647"}[e]||e,d.p+d.u(e)},(()=>{var e={5354:0,1869:0};d.f.j=(a,c)=>{var f=d.o(e,a)?e[a]:void 0;if(0!==f)if(f)c.push(f[2]);else if(/^(1869|5354)$/.test(a))e[a]=0;else{var t=new Promise(((c,t)=>f=e[a]=[c,t]));c.push(f[2]=t);var r=d.p+d.u(a),b=new Error;d.l(r,(c=>{if(d.o(e,a)&&(0!==(f=e[a])&&(e[a]=void 0),f)){var t=c&&("load"===c.type?"missing":c.type),r=c&&c.target&&c.target.src;b.message="Loading chunk "+a+" failed.\n("+t+": "+r+")",b.name="ChunkLoadError",b.type=t,b.request=r,f[1](b)}}),"chunk-"+a,a)}},d.O.j=a=>0===e[a];var a=(a,c)=>{var f,t,r=c[0],b=c[1],o=c[2],n=0;if(r.some((a=>0!==e[a]))){for(f in b)d.o(b,f)&&(d.m[f]=b[f]);if(o)var i=o(d)}for(a&&a(c);n
Archive | 大语言模型(Large Language Models)
-
+
diff --git a/blog/first-blog-post/index.html b/blog/first-blog-post/index.html
index 022a784..617821b 100644
--- a/blog/first-blog-post/index.html
+++ b/blog/first-blog-post/index.html
@@ -5,7 +5,7 @@
First Blog Post | 大语言模型(Large Language Models)
-
+
diff --git a/blog/index.html b/blog/index.html
index a57e822..232e42d 100644
--- a/blog/index.html
+++ b/blog/index.html
@@ -5,7 +5,7 @@
Blog | 大语言模型(Large Language Models)
-
+
diff --git a/blog/long-blog-post/index.html b/blog/long-blog-post/index.html
index 8f264c9..c6364c0 100644
--- a/blog/long-blog-post/index.html
+++ b/blog/long-blog-post/index.html
@@ -5,7 +5,7 @@
Long Blog Post | 大语言模型(Large Language Models)
-
+
diff --git a/blog/mdx-blog-post/index.html b/blog/mdx-blog-post/index.html
index e21fe8a..9ca1237 100644
--- a/blog/mdx-blog-post/index.html
+++ b/blog/mdx-blog-post/index.html
@@ -5,7 +5,7 @@
MDX Blog Post | 大语言模型(Large Language Models)
-
+
diff --git a/blog/tags/docusaurus/index.html b/blog/tags/docusaurus/index.html
index 89f8ec9..54a4772 100644
--- a/blog/tags/docusaurus/index.html
+++ b/blog/tags/docusaurus/index.html
@@ -5,7 +5,7 @@
4 posts tagged with "docusaurus" | 大语言模型(Large Language Models)
-
+
diff --git a/blog/tags/facebook/index.html b/blog/tags/facebook/index.html
index 38a0b4e..9caa9b4 100644
--- a/blog/tags/facebook/index.html
+++ b/blog/tags/facebook/index.html
@@ -5,7 +5,7 @@
One post tagged with "facebook" | 大语言模型(Large Language Models)
-
+
diff --git a/blog/tags/hello/index.html b/blog/tags/hello/index.html
index 9ce0ec8..0347501 100644
--- a/blog/tags/hello/index.html
+++ b/blog/tags/hello/index.html
@@ -5,7 +5,7 @@
2 posts tagged with "hello" | 大语言模型(Large Language Models)
-
+
diff --git a/blog/tags/hola/index.html b/blog/tags/hola/index.html
index 7bc12c2..0ad3d86 100644
--- a/blog/tags/hola/index.html
+++ b/blog/tags/hola/index.html
@@ -5,7 +5,7 @@
One post tagged with "hola" | 大语言模型(Large Language Models)
-
+
diff --git a/blog/tags/index.html b/blog/tags/index.html
index ed5c44d..819319d 100644
--- a/blog/tags/index.html
+++ b/blog/tags/index.html
@@ -5,7 +5,7 @@
Tags | 大语言模型(Large Language Models)
-
+
diff --git a/blog/welcome/index.html b/blog/welcome/index.html
index ff61f06..06dc054 100644
--- a/blog/welcome/index.html
+++ b/blog/welcome/index.html
@@ -5,7 +5,7 @@
Welcome | 大语言模型(Large Language Models)
-
+
diff --git "a/docs/category/\350\257\276\347\250\213\345\244\247\347\272\262/index.html" "b/docs/category/\350\257\276\347\250\213\345\244\247\347\272\262/index.html"
index b472acf..79d292e 100644
--- "a/docs/category/\350\257\276\347\250\213\345\244\247\347\272\262/index.html"
+++ "b/docs/category/\350\257\276\347\250\213\345\244\247\347\272\262/index.html"
@@ -5,7 +5,7 @@
课程大纲 | 大语言模型(Large Language Models)
-
+
diff --git a/docs/homework/index.html b/docs/homework/index.html
index 5fa7a5b..5e3c2b0 100644
--- a/docs/homework/index.html
+++ b/docs/homework/index.html
@@ -5,7 +5,7 @@
课程作业 | 大语言模型(Large Language Models)
-
+
diff --git a/docs/intro/index.html b/docs/intro/index.html
index 9bdca54..7437d2c 100644
--- a/docs/intro/index.html
+++ b/docs/intro/index.html
@@ -3,35 +3,55 @@
-课程介绍 | 大语言模型(Large Language Models)
+课程介绍 | 大语言模型(Large Language Models)
-
+
课程介绍
+
时间/地点
+
+- CS 2916
+- 每周四18:00 - 20:25 (每周三课时)
+- 计算机科学与技术(致远荣誉计划)ACM班
+- 上海交通大学 闵行 东中院2-403
+
+
Instructors/TAs
+
Instructor
+
+
TAs
+
+
Guest Lecturers
+
+- 邱锡鹏 (复旦大学教授,上海高校青年教师教学竞赛优等奖,著作《神经网络与深度学习》,MOSS大模型领导者)
+- 闫宏秀(上海交通大学教授,主要研究方向:技术哲学、数据伦理、大模型安全对齐)
+- 魏忠钰 (复旦大学数据智能与社会计算实验室负责人,上海市青年教师教学比赛优秀奖,主要研究方向:多模态智能交互)
+- 颜航 (浦江国家实验室青年研究员,浦语大模型InternLM核心完成人)
+
开设背景
大语言模型(Large Language Models)技术搭配提示学习重新定了人工智能学习的建模范式和人工交互方式。 以ChatGPT为代表的产品的出现引起了各界广泛的关注和兴趣,使得国内外机构都在尝试进行相关技术积累工作。以大语言模型为核心的生成式人工智能技术的出现,在不同领域、不同方面带来结构性的变革。
-以自然语言方向研究为例,传统任务建模范式发生了巨大的改变,这种任务建模范式的转变带来了科研 范式的转变,逐渐形成以大语言模型为核心的研究模式,然而以大语言模型为核心的技术涉及知识点多,迭代快,造成了高校课程教育和产业技术需求的不匹配,
+以自然语言方向研究为例,传统任务建模范式发生了巨大的改变,这种任务建模范式的转变带来了科研范式的转变,逐渐形成以大语言模型为核心的研究模式,然而以大语言模型为核心的技术涉及知识点多,迭代快,造成了高校课程教育和产业技术需求的不匹配,
在国际上,为了应对这个问题,斯坦福和卡内基梅隆大学优先开设了相应的课程:
- 斯坦福计算机系在2023年增设了cs324 (large language models,大语言模型)
- 卡耐基梅隆大学也在2023年新增了课程11-667 (Large Language Models Methods and Applications,大语言模型的方法和应用)
国内目前还没有非常系统的课程,这里旨在开设一个 “大语言模型”的课程,通过学习这门课程,学生将能够及时了解并深入研究这一领域的最新进展。有助于在未来的职业生涯中保持竞争力。大预训练语言模型技术已经引发了技术革命,对自然语言处理、机器翻译、自动文本生成等领域产生了深远影响。本课程将帮助学生理解这一革命的本质、历史和未来发展,为他们在相关领域的工作做好准备。
-
时间/地点
-
-- CS 2916
-- 每周四18:00 - 20:25 (每周三课时)
-- 计算机科学与技术(致远荣誉计划)ACM班
-- 上海交通大学 闵行 东中院2-403
-
课程形式与打分
- 该课程每个章节都会推荐一些阅读材料,授课内容也会围绕其展开,建议提前阅读;
- 课后问题讨论可以通过Canvas论坛或者通过课程讨论微信群与授课老师和TA交流
-- 课程中会穿插一 些代码实践指导,也会邀请与该章节相关的国际知名的学者来进行授课
+- 课程中会穿插一些代码实践指导,也会邀请与该章节相关的国际知名的学者来进行授课
- 课程一共有四个小作业,最终课程成绩将会根据权重确定得分:课程作业1,2 各占10%,作业3 各占20%,课程作业4 占60%
-
+
\ No newline at end of file
diff --git a/docs/lectures/agents/index.html b/docs/lectures/agents/index.html
index 4974337..249dae7 100644
--- a/docs/lectures/agents/index.html
+++ b/docs/lectures/agents/index.html
@@ -5,7 +5,7 @@
Agents | 大语言模型(Large Language Models)
-
+
diff --git a/docs/lectures/alignment/index.html b/docs/lectures/alignment/index.html
index 3f37172..7eb9fc7 100644
--- a/docs/lectures/alignment/index.html
+++ b/docs/lectures/alignment/index.html
@@ -5,7 +5,7 @@
Alignment and AI Safety | 大语言模型(Large Language Models)
-
+
diff --git a/docs/lectures/evaluation/index.html b/docs/lectures/evaluation/index.html
index 3816adc..cbe8aa2 100644
--- a/docs/lectures/evaluation/index.html
+++ b/docs/lectures/evaluation/index.html
@@ -5,7 +5,7 @@
Evaluation | 大语言模型(Large Language Models)
-
+
diff --git a/docs/lectures/instruction-tuning/index.html b/docs/lectures/instruction-tuning/index.html
index 52dcd28..f6355ba 100644
--- a/docs/lectures/instruction-tuning/index.html
+++ b/docs/lectures/instruction-tuning/index.html
@@ -5,7 +5,7 @@
Supervised Finetuning and Instruction Tuning | 大语言模型(Large Language Models)
-
+
diff --git a/docs/lectures/lms/index.html b/docs/lectures/lms/index.html
index f2fbdbc..7ca991c 100644
--- a/docs/lectures/lms/index.html
+++ b/docs/lectures/lms/index.html
@@ -5,7 +5,7 @@
Language Models and Representation Learning | 大语言模型(Large Language Models)
-
+
diff --git a/docs/lectures/long-context/index.html b/docs/lectures/long-context/index.html
index ccfe0d1..81f55f2 100644
--- a/docs/lectures/long-context/index.html
+++ b/docs/lectures/long-context/index.html
@@ -5,7 +5,7 @@
Long-context LLM | 大语言模型(Large Language Models)
-
+
diff --git a/docs/lectures/multimodal/index.html b/docs/lectures/multimodal/index.html
index c0a8eb3..621132d 100644
--- a/docs/lectures/multimodal/index.html
+++ b/docs/lectures/multimodal/index.html
@@ -5,7 +5,7 @@
Multi-modal LLM | 大语言模型(Large Language Models)
-
+
diff --git a/docs/lectures/nn-basics/index.html b/docs/lectures/nn-basics/index.html
index bd18f33..2a0fa87 100644
--- a/docs/lectures/nn-basics/index.html
+++ b/docs/lectures/nn-basics/index.html
@@ -5,7 +5,7 @@
Neural networks and deep learning basics | 大语言模型(Large Language Models)
-
+
diff --git a/docs/lectures/poster/index.html b/docs/lectures/poster/index.html
index 85fa03d..968c139 100644
--- a/docs/lectures/poster/index.html
+++ b/docs/lectures/poster/index.html
@@ -5,7 +5,7 @@
Poster | 大语言模型(Large Language Models)
-
+
diff --git a/docs/lectures/presentation/index.html b/docs/lectures/presentation/index.html
index 7af9a32..01801d2 100644
--- a/docs/lectures/presentation/index.html
+++ b/docs/lectures/presentation/index.html
@@ -5,7 +5,7 @@
Presentation | 大语言模型(Large Language Models)
-
+
diff --git a/docs/lectures/prompting-engineering/index.html b/docs/lectures/prompting-engineering/index.html
index 87a47e4..1cfec4b 100644
--- a/docs/lectures/prompting-engineering/index.html
+++ b/docs/lectures/prompting-engineering/index.html
@@ -5,7 +5,7 @@
Prompting Engineering | 大语言模型(Large Language Models)
-
+
diff --git a/docs/lectures/rag/index.html b/docs/lectures/rag/index.html
index 55da094..02357e5 100644
--- a/docs/lectures/rag/index.html
+++ b/docs/lectures/rag/index.html
@@ -5,7 +5,7 @@
Retrieval Augmented Generation | 大语言模型(Large Language Models)
-
+
diff --git a/docs/lectures/rm-rlhf/index.html b/docs/lectures/rm-rlhf/index.html
index 3579e13..8cd4987 100644
--- a/docs/lectures/rm-rlhf/index.html
+++ b/docs/lectures/rm-rlhf/index.html
@@ -5,7 +5,7 @@
Reward Model and RLHF | 大语言模型(Large Language Models)
-
+
diff --git a/docs/lectures/transformers/index.html b/docs/lectures/transformers/index.html
index e9df10d..4e98d36 100644
--- a/docs/lectures/transformers/index.html
+++ b/docs/lectures/transformers/index.html
@@ -5,7 +5,7 @@
Transformers and Pretrained Langauge Models | 大语言模型(Large Language Models)
-
+
diff --git a/docs/lectures/why-llms/index.html b/docs/lectures/why-llms/index.html
index 0c8013b..092b385 100644
--- a/docs/lectures/why-llms/index.html
+++ b/docs/lectures/why-llms/index.html
@@ -5,7 +5,7 @@
Why LLMs? | 大语言模型(Large Language Models)
-
+
diff --git a/docs/schedule/index.html b/docs/schedule/index.html
index c5c4be0..79e6aca 100644
--- a/docs/schedule/index.html
+++ b/docs/schedule/index.html
@@ -5,11 +5,11 @@
安排表 | 大语言模型(Large Language Models)
-
+
安排表
-
Week | Date | Content | Homework | Lecturer |
---|
1 | 2024/02/22 | Why LLMs? | - | - |
2 | 2024/02/29 | Neural Networks and Deep Learning Basics | - | - |
3 | 2024/03/07 | Language Models and Representation Learning | 👍hw1 out | - |
4 | 2024/03/14 | Transformers and Pretrained Langauge Models | - | Prof. Xipeng Qiu |
5 | 2024/03/21 | Prompting Engineering | - | - |
6 | 2024/03/28 | Evaluation | 👍hw2 out, hw1 due | - |
7 | 2024/04/04 | Qingming Festival | - | - |
8 | 2024/04/11 | Supervised Finetuning and Instruction Tuning | - | - |
9 | 2024/04/18 | Reward Model and RLHF | - | - |
10 | 2024/04/25 | Alignment and AI Safety | 👍hw2 due, hw3,4 out | - |
11 | 2024/05/02 | Retrieval Augmented Generation | - | - |
12 | 2024/05/09 | Agents | - | - |
13 | 2024/05/16 | Long-context LLM | | - |
14 | 2024/05/23 | Multi-modal LLM | 👍hw3 due | - |
15 | 2024/05/30 | Presentation | - | - |
16 | 2024/06/06 | Presentation | - | - |
17 | 2024/06/13 | Poster | 👍hw4 due | - |
+Week | Date | Content | Homework | Lecturer |
---|
1 | 2024/02/22 | Why LLMs? | - | Pengfei Liu |
2 | 2024/02/29 | Neural Networks and Deep Learning Basics | - | Pengfei Liu |
3 | 2024/03/07 | Language Models and Representation Learning | 👍hw1 out | Pengfei Liu |
4 | 2024/03/14 | Transformers and Pretrained Langauge Models | - | Xipeng Qiu |
5 | 2024/03/21 | Prompting Engineering | - | Pengfei Liu |
6 | 2024/03/28 | Evaluation | 👍hw2 out, hw1 due | Pengfei Liu |
7 | 2024/04/04 | Qingming Festival | - | - |
8 | 2024/04/11 | Supervised Finetuning and Instruction Tuning | - | Hang Yan, Pengfei Liu |
9 | 2024/04/18 | Reward Model and RLHF | - | Pengfei Liu |
10 | 2024/04/25 | Alignment and AI Safety | 👍hw2 due, hw3,4 out | Hongxiu Yan, Pengfei Liu |
11 | 2024/05/02 | Multi-modal LLM | - | Zhongyu Wei, Pengfei Liu |
12 | 2024/05/09 | Agents | - | - |
13 | 2024/05/16 | Long-context LLM | | Pengfei Liu |
14 | 2024/05/23 | Retrieval Augmented Generation | 👍hw3 due | Pengfei Liu |
15 | 2024/05/30 | Presentation | - | - |
16 | 2024/06/06 | Presentation | - | - |
17 | 2024/06/13 | Poster | 👍hw4 due | - |