-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
executable file
·81 lines (67 loc) · 3.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import time
from options.train_options import TrainOptions
from data import CreateDataLoader
from models import create_model
from util.visualizer import Visualizer
import numpy as np
if __name__ == '__main__':
opt = TrainOptions().parse()
data_loader = CreateDataLoader(opt)
dataset = data_loader.load_data()
dataset_size = len(data_loader)
print('#training images = %d' % dataset_size)
model = create_model(opt)
#visualizer = Visualizer(opt)
total_steps = 0
for epoch in range(opt.epoch_count, opt.niter + opt.niter_decay + 1):
epoch_start_time = time.time()
iter_data_time = time.time()
epoch_iter = 0
print "epoch ",epoch
loss = np.zeros((8))
for i, data in enumerate(dataset):
#print "..."
if i % 100 == 0:
print time.strftime("%Y-%m-%d %H:%M:%S",time.localtime(time.time()))
print i,"/",dataset_size
iter_start_time = time.time()
if total_steps % opt.print_freq == 0:
t_data = iter_start_time - iter_data_time
#visualizer.reset()
total_steps += opt.batchSize
epoch_iter += opt.batchSize
model.set_input(data)
model.optimize_parameters()
errors = model.get_current_errors()
#print "D_A",errors["D_A"].data.cpu().numpy()," G_A",errors["G_A"].data.cpu().numpy()," Cyc_A",errors["Cyc_A"].data.cpu().numpy()," idt_A",errors["idt_A"].data.cpu().numpy()," D_B",errors["D_B"].data.cpu().numpy()," G_B",errors["G_B"].data.cpu().numpy()," Cyc_B",errors["Cyc_B"].data.cpu().numpy()," idt_B",errors["idt_B"].data.cpu().numpy()
loss[0] += errors["D_A"].data.cpu().numpy()[0]
loss[1] += errors["G_A"].data.cpu().numpy()[0]
loss[2] += errors["Cyc_A"].data.cpu().numpy()[0]
loss[3] += errors["idt_A"].data.cpu().numpy()[0]
loss[4] += errors["D_B"].data.cpu().numpy()[0]
loss[5] += errors["G_B"].data.cpu().numpy()[0]
loss[6] += errors["Cyc_B"].data.cpu().numpy()[0]
loss[7] += errors["idt_B"].data.cpu().numpy()[0]
if total_steps % opt.display_freq == 0:
save_result = total_steps % opt.update_html_freq == 0
#visualizer.display_current_results(model.get_current_visuals(), epoch, save_result)
if total_steps % opt.print_freq == 0:
errors = model.get_current_errors()
t = (time.time() - iter_start_time) / opt.batchSize
#visualizer.print_current_errors(epoch, epoch_iter, errors, t, t_data)
#if opt.display_id > 0:
# visualizer.plot_current_errors(epoch, float(epoch_iter) / dataset_size, opt, errors)
if total_steps % opt.save_latest_freq == 0:
print('saving the latest model (epoch %d, total_steps %d)' %
(epoch, total_steps))
model.save('latest')
iter_data_time = time.time()
print loss
if epoch % opt.save_epoch_freq == 0:
print('saving the model at the end of epoch %d, iters %d' %
(epoch, total_steps))
model.save('latest')
model.save(epoch)
print('End of epoch %d / %d \t Time Taken: %d sec' %
(epoch, opt.niter + opt.niter_decay, time.time() - epoch_start_time))
model.update_learning_rate()