-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdatasets.py
124 lines (94 loc) · 3.83 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
"""prepare CIFAR and SVHN
"""
from __future__ import print_function
import sys
import os
import glob
import torch
import torchvision
import torchvision.transforms as transforms
from torch.utils.data import Dataset
from PIL import Image
import numpy as np
crop_size = 32
padding = 4
class ImageNet_For_Search(Dataset):
def __init__(self, root, transforms_=None, num_class=100):
self.transform = transforms_
self.files = []
self.labels = []
# dir_list = np.random.choice(os.listdir(os.path.join(root, mode)), num_class, replace=False)
dir_list = os.listdir(root)[:num_class]
for label, dirname in enumerate(dir_list):
for fname in os.listdir(os.path.join(root, dirname)):
assert 'JPEG' in fname or 'jpg' in fname or 'png' in fname
self.files.append(os.path.join(root, dirname, fname))
self.labels.append(label)
data_list = list(zip(self.files, self.labels))
np.random.shuffle(data_list)
self.files, self.labels = zip(*data_list)
self.files = list(self.files)
self.labels = list(self.labels)
def __getitem__(self, index):
img = self.transform(Image.open(self.files[index % len(self.files)]).convert('RGB'))
label = self.labels[index % len(self.files)]
return img, label
def __len__(self):
# return max(len(self.files), len(self.files_B))
return len(self.files)
def prepare_train_data_for_search(dataset='imagenet', datadir='/home/yf22/dataset', num_class=100):
if 'imagenet' in dataset:
train_dataset = ImageNet_For_Search(
datadir,
transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
]),
num_class=num_class)
else:
train_dataset = None
return train_dataset
def prepare_test_data_for_search(dataset='imagenet', datadir='/home/yf22/dataset', num_class=100):
if 'imagenet' in dataset:
train_dataset = ImageNet_For_Search(
datadir,
transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
]),
num_class=num_class)
else:
train_dataset = None
return train_dataset
def prepare_train_data(dataset='imagenet', datadir='/home/yf22/dataset'):
if 'imagenet' in dataset:
train_dataset = torchvision.datasets.ImageFolder(
datadir,
transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
]))
else:
train_dataset = None
return train_dataset
def prepare_test_data(dataset='imagenet', datadir='/home/yf22/dataset'):
if 'imagenet' in dataset:
test_dataset = torchvision.datasets.ImageFolder(datadir, transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
]))
else:
test_dataset = None
return test_dataset