-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsearch.py
909 lines (758 loc) · 41.7 KB
/
search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
from __future__ import division
import os
import sys
import time
import glob
import logging
from tqdm import tqdm
import re
import torch
import torch.nn as nn
import torch.utils
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
import torchvision.datasets as dset
from torch.autograd import Variable
import torch.distributed as dist
import torch.multiprocessing as mp
import torch.utils.data.distributed
from datasets import prepare_train_data, prepare_test_data, prepare_train_data_for_search, prepare_test_data_for_search
import time
from tensorboardX import SummaryWriter
from config_search import config
import numpy as np
import matplotlib
# Force matplotlib to not use any Xwindows backend.
matplotlib.use('Agg')
from matplotlib import pyplot as plt
from PIL import Image
from architect import Architect
from model_search_ws_mix_fix_conv import FBNet as Network
from model_infer import FBNet_Infer
from lr import LambdaLR
from perturb import Random_alpha
import argparse
from thop import profile
# from thop.count_hooks import count_convNd
parser = argparse.ArgumentParser(description='DNA')
parser.add_argument('--dataset', type=str, default=None,
help='which dataset to use')
parser.add_argument('--search_space', type=str, default=None,
help='which dataset to use')
parser.add_argument('--pretrain_epoch', type=int, default=None,
help='pretrain epochs')
parser.add_argument('--load_epoch', type=int, default=None,
help='which epoch to load')
parser.add_argument('--pretrain', type=str, default=None,
help='path to save')
parser.add_argument('--act_num', type=int, default=None,
help='path to activate')
parser.add_argument('--arch_update_frec', type=int,default=None, help='the frec of update arch')
parser.add_argument('--header_channel', type=int, default=1504,
help='number of the header_channel')
parser.add_argument('--dataset_path', type=str, default=None,
help='path to dataset')
parser.add_argument('--running_mode', type=str, default=None,
help='HW-NAS algorithm to run, select from FBNet, ProxylessNAS')
parser.add_argument('--hw_platform_path', type=str, default=None,
help='path to hardware platform data')
parser.add_argument('--efficiency_metric', type=str, default=None,
help='efficiency metric, select from latency, flops, energy')
parser.add_argument('-b', '--batch_size', type=int, default=None,
help='batch size')
parser.add_argument('--num_workers', type=int, default=None,
help='number of workers')
# parser.add_argument('--num_classes', type=int, default=None,
# help='numbe')
parser.add_argument('--flops_weight', type=float, default=None,
help='weight of FLOPs loss')
parser.add_argument('--flops_max', type=float, default=None,
help='the max number of FLOPs')
parser.add_argument('--flops_min', type=float, default=None,
help='the minimal number of FLOPs')
parser.add_argument('--weight_decay', type=float, default=None,
help='the weight decay')
parser.add_argument('--lr', type=float, default=0.05,
help='weight of learning rate')
parser.add_argument('--lr_schedule', type=str, default='cosine',
help='the lr scheduler')
parser.add_argument('--arch_learning_rate', type=float, default=3e-4,
help='weight of learning rate')
parser.add_argument('--gpu', type=str, default='0',
help='gpu ids: e.g. 0 0,1,2, 0,2. use -1 for CPU')
# parser.add_argument('--gpu', nargs='+', type=int, default=None,
# help='specify gpus')
# distributed parallel
parser.add_argument("--local_rank", type=int, default=0)
parser.add_argument("--port", type=str, default="10001")
parser.add_argument('--distributed', type=bool, default=False,
help='whether to use distributed training')
parser.add_argument("--ngpus_per_node", type=int, default=0)
parser.add_argument('--world_size', type=int, default=1,
help='number of nodes')
parser.add_argument('--rank', type=int, default=None,
help='node rank')
parser.add_argument('--dist_url', type=str, default=None,
help='url used to set up distributed training')
# parser.add_argument('--seed', type=int, default=123456,
# help='random seed')
parser.add_argument('--seed', type=int, default=2,
help='random seed')
args = parser.parse_args()
np.random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.benchmark = True
def main():
if args.dataset is not None:
config.dataset = args.dataset
if args.search_space is not None:
config.search_space = args.search_space
if args.pretrain_epoch is not None:
config.pretrain_epoch = args.pretrain_epoch
if args.load_epoch is not None:
config.load_epoch = args.load_epoch
if args.dataset_path is not None:
config.dataset_path = args.dataset_path
if args.pretrain is not None:
config.pretrain = args.pretrain
if args.act_num is not None:
config.act_num = args.act_num
config.pretrain_act_num = args.act_num
if args.arch_update_frec is not None:
config.arch_update_frec = args.arch_update_frec
if args.header_channel is not None:
config.header_channel = args.header_channel
if args.weight_decay is not None:
config.weight_decay = args.weight_decay
if args.lr is not None:
config.lr = args.lr
if args.lr_schedule is not None:
config.lr_schedule = args.lr_schedule
if args.arch_learning_rate is not None:
config.arch_learning_rate = args.arch_learning_rate
if args.running_mode is not None:
print('Mannually change HW-NAS running mode')
if args.running_mode == 'FBNet':
config.mode = 'soft'
elif args.running_mode == 'ProxylessNAS':
config.mode = 'proxy_hard'
else:
print('HW-NAS algorithm {} is not supported'.format(args.running_mode))
sys.exit(0)
if args.hw_platform_path is not None:
config.hw_platform_path = args.hw_platform_path
if args.efficiency_metric is not None:
config.efficiency_metric = args.efficiency_metric
if args.batch_size is not None:
config.batch_size = args.batch_size
if args.num_workers is not None:
config.num_workers = args.num_workers
if args.flops_weight is not None:
config.flops_weight = args.flops_weight
if args.flops_max is not None:
config.flops_max = args.flops_max
if args.flops_min is not None:
config.flops_min = args.flops_min
if args.world_size is not None:
config.world_size = args.world_size
if args.rank is not None:
config.rank = args.rank
if args.dist_url is not None:
config.dist_url = args.dist_url
if args.gpu is not None:
config.gpu = args.gpu
if args.port is not None:
config.port = args.port
# if args.distributed:
# print("args.distributed",args.distributed)
# print("config.distributed",config.distributed)
config.distributed = args.distributed
# print("args.distributed",args.distributed)
# print("config.distributed",config.distributed)
if args.local_rank is not None:
config.local_rank = args.local_rank
if args.ngpus_per_node is not None:
ngpus_per_node = args.ngpus_per_node
# config.distributed = config.world_size > 1 or config.multiprocessing_distributed
gpu_ids = config.gpu.split(',')
# print("gpu_ids",gpu_ids)
config.gpu = []
for gpu_id in gpu_ids:
id = int(gpu_id)
# print("id",id)
config.gpu.append(id)
gpu = config.gpu
print("gpu",gpu)
if config.dataset == 'cifar10':
config.num_classes = 10
elif config.dataset == 'cifar100':
config.num_classes = 100
else:
config.num_classes = 100
print('Dataset: imagenet !')
# sys.exit()
# TODO:
config.nepochs = 90 + config.pretrain_epoch
# ngpus_per_node = torch.cuda.device_count()
# config.ngpus_per_node = ngpus_per_node
config.num_workers = config.num_workers * ngpus_per_node
# print(config)
if config.multiprocessing_distributed:
# Since we have ngpus_per_node processes per node, the total world_size
# needs to be adjusted accordingly
config.world_size = ngpus_per_node * config.world_size
# Use torch.multiprocessing.spawn to launch distributed processes: the
# main_worker process function
mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, config))
else:
# Simply call main_worker function
config.world_size = ngpus_per_node * config.world_size
main_worker(config.gpu, ngpus_per_node, config)
def main_worker(gpu, ngpus_per_node, config):
config.gpu = gpu
pretrain = config.pretrain
if not os.path.exists(pretrain):
os.makedirs(pretrain)
if config.gpu is not None:
print("Use GPU: {} for training".format(config.gpu))
if config.distributed:
if config.multiprocessing_distributed:
# For multiprocessing distributed training, rank needs to be the
# global rank among all the processes
config.rank = config.rank * ngpus_per_node + gpu
# 1. 获取环境信息
# rank = int(os.environ['SLURM_PROCID'])
# world_size = int(os.environ['SLURM_NTASKS'])
# local_rank = int(os.environ['SLURM_LOCALID'])
node_list = str(os.environ['SLURM_NODELIST'])
# 对ip进行操作
node_parts = re.findall('[0-9]+', node_list)
host_ip = '{}.{}.{}.{}'.format(node_parts[1], node_parts[2], node_parts[3], node_parts[4])
# 注意端口一定要没有被使用
port = "23456"
# 使用TCP初始化方法
init_method = 'tcp://{}:{}'.format(host_ip, port)
# 多进程初始化,初始化通信环境
# dist.init_process_group("nccl", init_method=init_method,
# world_size=world_size, rank=rank)
os.environ['MASTER_PORT'] = config.port
dist.init_process_group(backend="nccl")
# dist.init_process_group(backend=config.dist_backend, init_method=init_method,
# world_size=config.world_size, rank=config.rank)
# print("Rank: {}".format(config.rank))
# if not config.multiprocessing_distributed or (config.multiprocessing_distributed and config.rank % ngpus_per_node == 0):
if not (config.multiprocessing_distributed or config.distributed) or (config.multiprocessing_distributed and config.rank % ngpus_per_node == 0) or (config.distributed and dist.get_rank() == 0):
if type(pretrain) == str:
config.save = pretrain
else:
config.save = 'hw/{}-{}'.format(config.save, time.strftime("%Y%m%d-%H%M%S"))
logger = SummaryWriter(config.save)
log_format = '%(asctime)s %(message)s'
logging.basicConfig(stream=sys.stdout, level=logging.INFO, format=log_format, datefmt='%m/%d %I:%M:%S %p')
fh = logging.FileHandler(os.path.join(config.save, 'log.txt'))
fh.setFormatter(logging.Formatter(log_format))
logging.getLogger().addHandler(fh)
logging.info("args = %s", str(config))
else:
logger = None
model = Network(config=config)
# print(model)
print('config.gpu:', config.gpu)
if config.distributed:
# For multiprocessing distributed, DistributedDataParallel constructor
# should always set the single device scope, otherwise,
# DistributedDataParallel will use all available devices.
if len(config.gpu) > 1:
# print("config.gpu",config.gpu)
# torch.cuda.set_device(config.gpu)
# model.cuda(config.gpu)
# device = torch.device("cuda", config.local_rank)
# model = model.to(device)
# model = Network(config=config).to(device)
model.cuda()
# When using a single GPU per process and per
# DistributedDataParallel, we need to divide the batch size
# ourselves based on the total number of GPUs we have
# config.batch_size = int(config.batch_size / ngpus_per_node)
config.num_workers = int((config.num_workers + ngpus_per_node - 1) / ngpus_per_node)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=config.gpu, find_unused_parameters=True)
# model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[config.local_rank], find_unused_parameters=True)
else:
model.cuda()
# DistributedDataParallel will divide and allocate batch_size to all
# available GPUs if device_ids are not set
model = torch.nn.parallel.DistributedDataParallel(model, find_unused_parameters=True)
else:
model = torch.nn.DataParallel(model).cuda()
# model = torch.nn.DataParallel(model, config.gpu)
architect = Architect(model, config)
# Optimizer ###################################
base_lr = config.lr
parameters = []
parameters += list(model.module.stem.parameters())
parameters += list(model.module.cells.parameters())
parameters += list(model.module.header.parameters())
parameters += list(model.module.fc.parameters())
if config.opt == 'Adam':
optimizer = torch.optim.Adam(
parameters,
lr=config.lr,
betas=config.betas)
elif config.opt == 'Sgd':
optimizer = torch.optim.SGD(
parameters,
lr=config.lr,
momentum=config.momentum,
weight_decay=config.weight_decay)
else:
print("Wrong Optimizer Type.")
sys.exit()
# lr policy ##############################
# total_iteration = config.nepochs * config.niters_per_epoch
if config.lr_schedule == 'linear':
lr_policy = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=LambdaLR(config.nepochs, 0, config.decay_epoch).step)
elif config.lr_schedule == 'exponential':
lr_policy = torch.optim.lr_scheduler.ExponentialLR(optimizer, config.lr_decay)
elif config.lr_schedule == 'multistep':
lr_policy = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=config.milestones, gamma=config.gamma)
elif config.lr_schedule == 'cosine':
lr_policy = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, float(config.nepochs), eta_min=config.learning_rate_min)
else:
print("Wrong Learning Rate Schedule Type.")
sys.exit()
# TODO:
# if use multi machines, the pretrained weight and arch need to be duplicated on all the machines
if type(pretrain) == str and os.path.exists("/media/HD1/shh/NAS/ckpt/cifar10_AddAll_120_1.5_1_2" + "/weights_pretrain_%d.pth" %(config.pretrain_epoch)):
# TODO:
# if type(pretrain) == str and os.path.exists(pretrain + "/weights_pretrain_%d.pth" %(config.load_epoch)):
partial = torch.load("/media/HD1/shh/NAS/ckpt/cifar10_AddAll_120_1.5_1_2" + "/weights_pretrain_%d.pth" %(config.pretrain_epoch))
# partial = torch.load(pretrain + "/weights_pretrain_%d.pth" %(config.load_epoch))
state = model.state_dict()
pretrained_dict = {k: v for k, v in partial.items() if k in state and state[k].size() == partial[k].size()}
state.update(pretrained_dict)
model.load_state_dict(state)
pretrain_arch = torch.load("/media/HD1/shh/NAS/ckpt/cifar10_AddAll_120_1.5_1_2" + "/arch_pretrain_%d.pth" %(config.pretrain_epoch))
# pretrain_arch = torch.load(pretrain + "/arch_pretrain_%d.pth" %(config.load_epoch))
# pretrain_arch = torch.load(pretrain + "/arch_pretrain_90.pth")
model.module.alpha_end.data = pretrain_arch['alpha_end'].data
model.module.alpha_middle.data = pretrain_arch['alpha_middle'].data
# print(pretrain_arch['alpha'])
start_epoch = pretrain_arch['epoch'] + 1
optimizer.load_state_dict(pretrain_arch['optimizer'])
lr_policy.load_state_dict(pretrain_arch['lr_scheduler'])
architect.optimizer.load_state_dict(pretrain_arch['arch_optimizer'])
print('Resume from Epoch %d. Load pretrained weight and arch.' % start_epoch)
else:
start_epoch = 0
print('No checkpoint. Search from scratch.')
# # data loader ###########################
if 'cifar' in config.dataset:
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465),
(0.2023, 0.1994, 0.2010)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465),
(0.2023, 0.1994, 0.2010)),
])
if config.dataset == 'cifar10':
train_data = dset.CIFAR10(root=config.dataset_path, train=True, download=False, transform=transform_train)
test_data = dset.CIFAR10(root=config.dataset_path, train=False, download=False, transform=transform_test)
elif config.dataset == 'cifar100':
train_data = dset.CIFAR100(root=config.dataset_path, train=True, download=False, transform=transform_train)
# train_data.data = train_data.data[:32]
test_data = dset.CIFAR100(root=config.dataset_path, train=False, download=False, transform=transform_test)
# test_data.data = test_data.data[:32]
else:
print('Wrong dataset.')
sys.exit()
elif config.dataset == 'imagenet':
train_data = prepare_train_data_for_search(dataset=config.dataset,
datadir=config.dataset_path+'/train', num_class=config.num_classes)
test_data = prepare_test_data_for_search(dataset=config.dataset,
datadir=config.dataset_path+'/val', num_class=config.num_classes)
elif config.dataset == 'tinyimagenet':
print('Wrong dataset.')
traindir = os.path.join(config.dataset_path, 'train')
valdir = os.path.join(config.dataset_path, 'val')
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
train_data = dset.ImageFolder(
traindir,
transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
]))
test_data = dset.ImageFolder(valdir, transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
]))
else:
print("Wrong dataset!")
num_train = len(train_data)
indices = list(range(num_train))
split = int(np.floor(config.train_portion * num_train))
if config.distributed:
# train_data_model = torch.utils.data.Subset(train_data, indices[:split])
# train_data_arch = torch.utils.data.Subset(train_data, indices[split:num_train])
train_sampler_model = torch.utils.data.sampler. SubsetRandomSampler(indices[:split])
train_sampler_arch = torch.utils.data.sampler.SubsetRandomSampler(indices[split:num_train])
# train_sampler_model = torch.utils.data.distributed.DistributedSampler(train_data_model)
# train_sampler_arch = torch.utils.data.distributed.DistributedSampler(train_data_arch)
else:
train_sampler_model = torch.utils.data.sampler.SubsetRandomSampler(indices[:split])
train_sampler_arch = torch.utils.data.sampler.SubsetRandomSampler(indices[split:num_train])
train_loader_model = torch.utils.data.DataLoader(
train_data, batch_size=config.batch_size,
sampler=train_sampler_model, shuffle=(train_sampler_model is None),
pin_memory=False, num_workers=config.num_workers, drop_last=True)
train_loader_arch = torch.utils.data.DataLoader(
train_data, batch_size=config.batch_size,
sampler=train_sampler_arch, shuffle=(train_sampler_arch is None),
pin_memory=False, num_workers=config.num_workers, drop_last=True)
test_loader = torch.utils.data.DataLoader(test_data,
batch_size=config.batch_size,
shuffle=False,
num_workers=config.num_workers)
# tbar = tqdm(range(config.nepochs), ncols=80)
# TODO:
best_acc = 0
for epoch in range(start_epoch, config.nepochs):
# if config.distributed:
# train_loader_model.sampler.set_epoch(epoch)
# train_loader_arch.sampler.set_epoch(epoch)
# train_sampler_model.set_epoch(epoch)
# train_sampler_arch.set_epoch(epoch)
if config.perturb_alpha:
epsilon_alpha = 0.03 + (config.epsilon_alpha - 0.03) * epoch / config.nepochs
# if not config.multiprocessing_distributed or (config.multiprocessing_distributed and config.rank % ngpus_per_node == 0):
if not (config.multiprocessing_distributed or config.distributed) or (config.multiprocessing_distributed and config.rank % ngpus_per_node == 0) or (config.distributed and dist.get_rank() == 0):
logging.info('Epoch %d epsilon_alpha %e', epoch, epsilon_alpha)
else:
epsilon_alpha = 0
if epoch < config.pretrain_epoch:
update_arch = False
full_channel = True
stage = 0
all_conv = False
all_add = False
mix = False
full_kernel = False
model.module.set_search_mode(mode=config.pretrain_mode, act_num=config.pretrain_act_num)
# ######## both channel and kernel weight sharing #########
# if epoch < 60:
# full_channel = True
# full_kernel = True
# elif epoch < 90:
# full_channel = True
# full_kernel = False
# else:
# full_channel = False
# TODO:
# ###### channel-wise weight sharing #########
# if epoch < 50:
# all_conv = True
# if epoch < 25:
# full_channel = True
# else:
# full_channel = False
# elif epoch < 100:
# all_conv = False
# all_add = True
# if epoch < 75:
# full_channel = True
# else:
# full_channel = False
# else:
# all_add = False
# all_conv = False
# full_channel = False
# stage = 0
# mix = True
if epoch < 40:
all_conv = True
if epoch < 20:
full_channel = True
else:
full_channel = False
elif epoch < 80:
all_conv = False
all_add = True
if epoch < 60:
full_channel = True
else:
full_channel = False
else:
all_add = False
all_conv = False
full_channel = False
stage = 0
mix = True
else:
model.module.set_search_mode(mode=config.mode, act_num=config.act_num)
update_arch = True
full_channel = False
all_conv = False
all_add = False
mix = False
stage = 0
full_kernel = False
temp = config.temp_init * config.temp_decay ** epoch
# if not config.multiprocessing_distributed or (config.multiprocessing_distributed and config.rank % ngpus_per_node == 0):
if not (config.multiprocessing_distributed or config.distributed) or (config.multiprocessing_distributed and config.rank % ngpus_per_node == 0) or (config.distributed and dist.get_rank() == 0):
logging.info("Temperature: " + str(temp))
logging.info("[Epoch %d/%d] lr=%f" % (epoch + 1, config.nepochs, optimizer.param_groups[0]['lr']))
logging.info("update arch: " + str(update_arch))
train_iterwise(train_loader_model, train_loader_arch, model, architect, optimizer, lr_policy, logger, epoch,
update_arch=update_arch, full_channel=full_channel, stage=stage, full_kernel=full_kernel, all_conv=all_conv, all_add=all_add, mix=mix, epsilon_alpha=epsilon_alpha, temp=temp, arch_update_frec=config.arch_update_frec)
lr_policy.step()
torch.cuda.empty_cache()
# validation
# if epoch and not (epoch+1) % config.eval_epoch:
if epoch:
# if ((epoch+1) == (config.pretrain_epoch+90)):
# # if not config.multiprocessing_distributed or (config.multiprocessing_distributed and config.rank % ngpus_per_node == 0):
# save(model, os.path.join(config.save, 'weights_%d.pth'%(epoch+1)))
# logging.info("Save Sucessfully in ",config.save)
# save(model, os.path.join(config.save, 'weights_latest.pth'))
if ((epoch+1) == config.pretrain_epoch):
# if not config.multiprocessing_distributed or (config.multiprocessing_distributed and config.rank % ngpus_per_node == 0):
if not (config.multiprocessing_distributed or config.distributed) or (config.multiprocessing_distributed and config.rank % ngpus_per_node == 0) or (config.distributed and dist.get_rank() == 0):
save(model, os.path.join(config.save, 'weights_pretrain_%d.pth' %(config.pretrain_epoch)))
# TODO:
# if (config.pretrain_epoch == 150):
# if ((epoch+1) == 60 or (epoch+1) == 80 or (epoch+1) == 100 or (epoch+1) == 110 or (epoch+1) == 130):
# # if not config.multiprocessing_distributed or (config.multiprocessing_distributed and config.rank % ngpus_per_node == 0):
# if not (config.multiprocessing_distributed or config.distributed) or (config.multiprocessing_distributed and config.rank % ngpus_per_node == 0) or (config.distributed and dist.get_rank() == 0):
# save(model, os.path.join(config.save, 'weights_pretrain_%d.pth' %(epoch+1)))
# if ((epoch+1)%30 == 0):
# save(model, os.path.join(config.save, 'weights_%d.pth'%(epoch+1)))
with torch.no_grad():
if update_arch == False:
acc = infer(epoch, model, test_loader, logger, temp=temp)
if config.distributed:
acc = reduce_tensor(acc, config.world_size)
# if not config.multiprocessing_distributed or (config.multiprocessing_distributed and config.rank % ngpus_per_node == 0):
if not (config.multiprocessing_distributed or config.distributed) or (config.multiprocessing_distributed and config.rank % ngpus_per_node == 0) or (config.distributed and dist.get_rank() == 0):
logger.add_scalar('acc/val', acc, epoch)
logging.info("Epoch %d: acc %.3f"%(epoch, acc))
state = {}
state['alpha_end'] = getattr(model.module, 'alpha_end')
state['alpha_middle'] = getattr(model.module, 'alpha_middle')
model.module.show_arch(alpha_end=state['alpha_end'],alpha_middle=state['alpha_middle'])
# print(state['alpha'])
state['acc'] = acc
state['epoch'] = epoch
state['optimizer'] = optimizer.state_dict()
state['lr_scheduler'] = lr_policy.state_dict()
state['arch_optimizer'] = architect.optimizer.state_dict()
if ((epoch+1) == config.pretrain_epoch):
if not (config.multiprocessing_distributed or config.distributed) or (config.multiprocessing_distributed and config.rank % ngpus_per_node == 0) or (config.distributed and dist.get_rank() == 0):
torch.save(state, os.path.join(config.save, "arch_pretrain_%d.pth" %config.pretrain_epoch))
# if acc > best_acc:
# best_acc = acc
# if not (config.multiprocessing_distributed or config.distributed) or (config.multiprocessing_distributed and config.rank % ngpus_per_node == 0) or (config.distributed and dist.get_rank() == 0):
# torch.save(state, os.path.join(config.save, "arch_pretrain_%d.pth" %config.pretrain_epoch))
# if (config.pretrain_epoch == 150):
# if ((epoch+1) == 60 or (epoch+1) == 90 or (epoch+1) == 100 or (epoch+1) == 110 or (epoch+1) == 130):
# # if not config.multiprocessing_distributed or (config.multiprocessing_distributed and config.rank % ngpus_per_node == 0):
# if not (config.multiprocessing_distributed or config.distributed) or (config.multiprocessing_distributed and config.rank % ngpus_per_node == 0) or (config.distributed and dist.get_rank() == 0):
# torch.save(state, os.path.join(config.save, "arch_pretrain_%d.pth" %(epoch+1)))
else:
# TODO:
# if config.efficiency_metric != None:
acc, metric = infer(epoch, model, test_loader, logger, temp=temp, finalize=True)
# else:
# acc = infer(epoch, model, test_loader, logger, temp=temp, finalize=False)
# if config.distributed:
# acc = reduce_tensor(acc, config.world_size)
# if not config.multiprocessing_distributed or (config.multiprocessing_distributed and config.rank % ngpus_per_node == 0):
if not (config.multiprocessing_distributed or config.distributed) or (config.multiprocessing_distributed and config.rank % ngpus_per_node == 0) or (config.distributed and dist.get_rank() == 0):
logger.add_scalar('acc/val', acc, epoch)
logging.info("Epoch %d: acc %.3f"%(epoch, acc))
state = {}
# TODO:
# if config.efficiency_metric == 'flops':
logger.add_scalar('flops/val', metric, epoch)
logging.info("Epoch %d: FLOPs %.3f"%(epoch, metric))
state['flops'] = metric
# # For latency aware search, the returned metris FPS
# if config.efficiency_metric == 'latency':
# logger.add_scalar('fps/val', metric, epoch)
# logging.info("Epoch %d: FPS %.3f"%(epoch, metric))
# state['fps'] = metric
state['alpha_end'] = getattr(model.module, 'alpha_end')
state['alpha_middle'] = getattr(model.module, 'alpha_middle')
model.module.show_arch(alpha_end=state['alpha_end'],alpha_middle=state['alpha_middle'])
# print(state['alpha'])
state['acc'] = acc
state['epoch'] = epoch
state['optimizer'] = optimizer.state_dict()
state['lr_scheduler'] = lr_policy.state_dict()
state['arch_optimizer'] = architect.optimizer.state_dict()
if ((epoch+1) == config.pretrain_epoch):
# if not config.multiprocessing_distributed or (config.multiprocessing_distributed and config.rank % ngpus_per_node == 0):
if not (config.multiprocessing_distributed or config.distributed) or (config.multiprocessing_distributed and config.rank % ngpus_per_node == 0) or (config.distributed and dist.get_rank() == 0):
torch.save(state, os.path.join(config.save, "arch_pretrain_%d.pth" %config.pretrain_epoch))
# if ((epoch+1) % 30 == 0):
# # if ((epoch+1) == (config.pretrain_epoch+90)):
# torch.save(state, os.path.join(config.save, "arch_%d.pth"%(epoch+1)))
# torch.save(state, os.path.join(config.save, "arch_latest.pth"))
# TODO:
if config.efficiency_metric == 'flops':
if config.flops_weight > 0 and update_arch:
if metric < config.flops_min:
architect.flops_weight /= 2
elif metric > config.flops_max:
architect.flops_weight *= 2
# # if not config.multiprocessing_distributed or (config.multiprocessing_distributed and config.rank % ngpus_per_node == 0):
# logger.add_scalar("arch/flops_weight", architect.flops_weight, epoch+1)
# logging.info("arch_flops_weight = " + str(architect.flops_weight))
# For latency aware search, the returned metris FPS
# elif config.efficiency_metric == 'latency':
# if config.latency_weight > 0 and update_arch:
# if metric < config.fps_min:
# architect.latency_weight *= 2
# elif metric > config.fps_max:
# architect.latency_weight /= 2
# # if not config.multiprocessing_distributed or (config.multiprocessing_distributed and config.rank % ngpus_per_node == 0):
# logger.add_scalar("arch/latency_weight", architect.latency_weight, epoch+1)
# logging.info("arch_latency_weight = " + str(architect.latency_weight))
# if not config.multiprocessing_distributed or (config.multiprocessing_distributed and config.rank % ngpus_per_node == 0):
if not (config.multiprocessing_distributed or config.distributed) or (config.multiprocessing_distributed and config.rank % ngpus_per_node == 0) or (config.distributed and dist.get_rank() == 0):
if update_arch:
torch.save(state, os.path.join(config.save, "arch_%d.pth"%(epoch+1)))
save(model, os.path.join(config.save, "weight_%d.pth"%(epoch+1)))
# if config.efficiency_metric == 'latency':
# model_infer = FBNet_Infer(getattr(model.module, 'alpha'), config=config)
# latency = model_infer.forward_latency(size=(3, config.image_height, config.image_width))
# fps = 1000 / latency
# flops, params = profile(model_infer, inputs=(torch.randn(1, 3, config.image_height, config.image_width),))
# bitops = model_infer.forward_bitops(size=(3, config.image_height, config.image_width))
# logging.info("params = %fM, FLOPs = %fM, BitOPs = %fG", params / 1e6, flops / 1e6, bitops / 1e9)
# logging.info("FPS of Final Arch: %f", fps)
def crossentropyloss(x,y):
softmax_func=nn.Softmax(dim=1)
soft_output=softmax_func(x)
soft_output=torch.clamp(soft_output, 1e-4, 1, out=None)
log_output=torch.log(soft_output)
# print("log_output",log_output)
#pytorch中关于NLLLoss的默认参数配置为:reducetion=True、size_average=True
nllloss_func=nn.NLLLoss()
nlloss_output=nllloss_func(log_output,y)
return nlloss_output
def train_iterwise(train_loader_model, train_loader_arch, model, architect, optimizer, lr_policy, logger, epoch, update_arch=True, full_channel=False, stage=0, full_kernel=False, all_conv=False, all_add=False, mix=False, epsilon_alpha=0, temp=1, arch_update_frec=1):
model.train()
# bar_format = '{desc}[{elapsed}<{remaining},{rate_fmt}]'
# pbar = tqdm(range(len(train_loader_model)), file=sys.stdout, bar_format=bar_format, ncols=80)
dataloader_model = iter(train_loader_model)
dataloader_arch = iter(train_loader_arch)
for step in range(len(train_loader_model)):
start_time = time.time()
input, target = dataloader_model.next()
data_time = time.time() - start_time
input = input.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
if update_arch and step % arch_update_frec == 0:
# pbar.set_description("[Step %d/%d]" % (step + 1, len(train_loader_arch)))
try:
input_search, target_search = dataloader_arch.next()
except:
dataloader_arch = iter(train_loader_arch)
input_search, target_search = dataloader_arch.next()
input_search = input_search.cuda(non_blocking=True)
target_search = target_search.cuda(non_blocking=True)
loss_arch = architect.step(input_search, target_search, config=config, temp=temp)
# if not config.multiprocessing_distributed or (config.multiprocessing_distributed and config.rank % config.ngpus_per_node == 0):
if not (config.multiprocessing_distributed or config.distributed) or (config.multiprocessing_distributed and config.rank % config.ngpus_per_node == 0) or (config.distributed and dist.get_rank() == 0):
logger.add_scalar('loss_arch/train', loss_arch, epoch*len(train_loader_arch)+step)
# print('loss_arch/train', loss_arch)
if config.efficiency_metric == 'flops':
logger.add_scalar('arch/flops_supernet', architect.flops_supernet, epoch*len(train_loader_arch)+step)
# elif config.efficiency_metric == 'latency':
# logger.add_scalar('arch/latency_supernet', architect.latency_supernet, epoch*len(train_loader_arch)+step)
if epsilon_alpha and update_arch:
Random_alpha(model, epsilon_alpha)
# print("updata_arch",update_arch)
model.cuda()
# TODO:
# logit, kl_loss = model(input, temp, update_arch, full_channel, full_kernel)
logit = model(input, temp, update_arch, full_channel, stage, full_kernel, all_conv, all_add, mix)
# print("logit",logit)
# loss = model.module._criterion(logit, target)
# print("logit",logit)
# print("target",target)
loss = crossentropyloss(logit, target)
# TODO:
# loss += kl_loss
# print("loss",loss)
optimizer.zero_grad()
loss.backward()
# print('loss.backward()',loss.backward())
nn.utils.clip_grad_norm_(model.parameters(), config.grad_clip)
optimizer.step()
total_time = time.time() - start_time
# if not config.multiprocessing_distributed or (config.multiprocessing_distributed and config.rank % config.ngpus_per_node == 0):
if not (config.multiprocessing_distributed or config.distributed) or (config.multiprocessing_distributed and config.rank % config.ngpus_per_node == 0) or (config.distributed and dist.get_rank() == 0):
if (step+1) % 30 == 0:
logging.info("[Epoch %d/%d][Step %d/%d] Loss=%.3f Time=%.3f Data Time=%.3f" %
(epoch + 1, config.nepochs, step + 1, len(train_loader_model), loss.item(), total_time, data_time))
logger.add_scalar('loss_weight/train', loss, epoch*len(train_loader_model)+step)
# print(getattr(model.module, 'alpha_middle'))
torch.cuda.empty_cache()
del loss
if update_arch: del loss_arch
def infer(epoch, model, test_loader, logger, temp=1, finalize=False):
with torch.no_grad():
model.eval()
prec1_list = []
for i, (input, target) in enumerate(test_loader):
input_var = Variable(input).cuda()
target_var = Variable(target).cuda()
# TODO:
# output, kl_loss = model(input_var)
output = model(input_var)
prec1, = accuracy(output.data, target_var, topk=(1,))
prec1_list.append(prec1)
acc = sum(prec1_list)/len(prec1_list)
if finalize:
model_infer = FBNet_Infer(getattr(model.module, 'alpha_end'), getattr(model.module, 'alpha_middle'), config=config)
# if config.efficiency_metric == 'flops':
flops = model_infer.forward_flops((3, config.image_height, config.image_width))
return acc, flops
# elif config.efficiency_metric == 'latency':
# latency = model_infer.forward_latency([3, config.image_height, config.image_width])
# fps = 1000 / latency
# return acc, fps
else:
return acc
def reduce_tensor(rt, n):
dist.all_reduce(rt, op=dist.ReduceOp.SUM)
rt /= n
return rt
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def save(model, model_path):
torch.save(model.state_dict(), model_path)
if __name__ == '__main__':
main()