Skip to content

Latest commit

 

History

History
29 lines (19 loc) · 814 Bytes

README.md

File metadata and controls

29 lines (19 loc) · 814 Bytes

Brain-Tumor-Classifier

Classification of 3 different types of brain tumors using an MRI dataset and SciKit

Classification is accomplished via Support Vector Machines (supervised learning).

We classify images using three different kinds of methods:
  1. SVC (C-Support Vector Classification)
  2. LinearSVC (Linear Support Vector Classification)
  3. NuSVC (Nu-Support Vector Classification)
We label tumors with the following integers:
  • 1=meningioma
  • 2=glioma
  • 3=pituitary tumor

The image dataset can be found in braintumors_1/


Usage: python3 classifer_TYPE.py

  • SVC: classifer_SVC.py
  • LinearSVC: classifer_linearSVC.py
  • NuSVC: classifer_NuSVC.py

Python Dependencies: scipy.io, numpy, matplotlib.pyplot, sklearn, h5py, os, errno, random