forked from simongog/sdsl-lite
-
Notifications
You must be signed in to change notification settings - Fork 0
/
bp_support_sada.hpp
871 lines (788 loc) · 37.7 KB
/
bp_support_sada.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
/* sdsl - succinct data structures library
Copyright (C) 2009 Simon Gog
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see http://www.gnu.org/licenses/ .
*/
/*! \file bp_support_sada.hpp
\brief bp_support_sada.hpp contains an implementation of a balanced
parentheses support structure proposed by Kunihiko Sadakane.
\author Simon Gog
*/
#ifndef INCLUDED_SDSL_BP_SUPPORT_SADA
#define INCLUDED_SDSL_BP_SUPPORT_SADA
#include "int_vector.hpp"
#include "rank_support.hpp"
#include "select_support.hpp"
#include "algorithms.hpp"
#include "fast_cache.hpp"
#include <stack>
#include <map>
#include <set>
#include <utility>
#include <stdexcept>
#ifndef NDEBUG
#include <algorithm>
#endif
namespace sdsl
{
//! A class that provides support for bit_vectors that represent a BP sequence.
/*! This data structure supports the following operations:
* - find_open
* - find_close
* - enclose
* - double_enclose
* - rank
* - select
* - excess
* - rr_enclose
* An opening parenthesis in the balanced parentheses sequence is represented by a 1 in the bit_vector
* and a closing parenthesis by a 0.
*
* \tparam t_sml_blk The size of the small blocks. Denoted as `s` in Sadakane's paper.
* \tparam t_med_deg Number of small blocks that a medium block contains. Denoted as `l` in Sadakane's paper.
* \tparam t_rank Type of rank support used for the underlying bitvector.
* \tparam t_select Type of select support used for the underlying bitvector.
*
* \par References
* - Kunihiko Sadakane:
* The Ultimate Balanced Parentheses
* Technical Report 2008.
* - Kunihiko Sadakane, Gonzalo Navarro:
* Fully-Functional Succinct Trees.
* SODA 2010: 134-149
*
* @ingroup bps
*/
template<uint32_t t_sml_blk = 256,
uint32_t t_med_deg = 32,
class t_rank = rank_support_v5<>,
class t_select = select_support_mcl<> >
class bp_support_sada
{
public:
typedef bit_vector::size_type size_type;
typedef bit_vector::difference_type difference_type;
typedef int_vector<> sml_block_array_type;
typedef int_vector<> med_block_array_type;
typedef t_rank rank_type;
typedef t_select select_type;
private:
const bit_vector* m_bp; // the supported balanced parentheses sequence as bit_vector
rank_type m_bp_rank; // RS for the BP sequence => see excess() and rank()
select_type m_bp_select; // SS for the BP sequence => see select()
sml_block_array_type m_sml_block_min_max;
med_block_array_type m_med_block_min_max;
size_type m_size; // number of supported parentheses
size_type m_sml_blocks; // number of small sized blocks
size_type m_med_blocks; // number of medium sized blocks
size_type m_med_inner_blocks;// number of inner nodes in the min max tree of the medium sized blocks
//#define USE_CACHE
#ifdef USE_CACHE
mutable fast_cache find_close_cache;
mutable fast_cache find_open_cache;
mutable fast_cache select_cache;
#endif
void copy(const bp_support_sada& bp_support) {
m_bp = bp_support.m_bp;
m_bp_rank = bp_support.m_bp_rank;
m_bp_rank.set_vector(m_bp);
m_bp_select = bp_support.m_bp_select;
m_bp_select.set_vector(m_bp);
m_sml_block_min_max = bp_support.m_sml_block_min_max;
m_med_block_min_max = bp_support.m_med_block_min_max;
m_size = bp_support.m_size;
m_sml_blocks = bp_support.m_sml_blocks;
m_med_blocks = bp_support.m_med_blocks;
m_med_inner_blocks = bp_support.m_med_inner_blocks;
}
inline static size_type sml_block_idx(size_type i) {
return i/t_sml_blk;
}
inline static size_type med_block_idx(size_type i) {
return i/(t_sml_blk*t_med_deg);
}
inline static bool is_root(size_type v) {
return v==0;
}
inline static bool is_left_child(size_type v) {
assert(!is_root(v));
return v%2;
}
inline static bool is_right_child(size_type v) {
assert(!is_root(v));
return !(v%2);
}
inline static size_type parent(size_type v) {
assert(!is_root(v));
return (v-1)/2;
}
inline static size_type left_child(size_type v) {
return 2*v+1;
}
inline static size_type right_child(size_type v) {
return 2*v+2;
}
inline bool node_exists(size_type v)const {
return v < (m_med_inner_blocks + m_med_blocks);
}
inline static size_type right_sibling(size_type v) {
return ++v;
}
inline static size_type left_sibling(size_type v) {
return --v;
}
inline bool is_leaf(size_type v)const {
return v >= m_med_inner_blocks;
}
inline difference_type min_value(size_type v)const {
return m_size-((difference_type)m_med_block_min_max[2*v]);
}
inline difference_type max_value(size_type v)const {
return m_med_block_min_max[2*v+1]-m_size;
}
inline difference_type sml_min_value(size_type sml_block)const {
return (1 - ((difference_type)m_sml_block_min_max[sml_block<<1]));
}
inline difference_type sml_max_value(size_type sml_block)const {
return (difference_type)m_sml_block_min_max[(sml_block<<1)+1] - 1;
}
void print_node(size_type v)const {
std::cout<< "v = "<< v <<" (" << min_value(v)
<< ", " << max_value(v) << ")" ;
if (is_leaf(v)) {
std::cout<<" range: ["<<(v-m_med_inner_blocks)*t_med_deg* t_sml_blk
<< ","<<(v-m_med_inner_blocks+1)*t_med_deg* t_sml_blk-1<<"]";
}
std::cout<< std::endl;
}
//! Calculate the min parenthesis \f$j>i\f$ with \f$excess(j)=excess(i)+rel\f$
/*! \param i The index of a parenthesis in the supported sequence.
* \param rel The excess difference to the excess value of parentheses \f$i\f$.
* \return If there exists a parenthesis \f$ j>i\f$ with
* \f$ excess(j) = excess(i)+rel \f$, \f$j\f$ is returned
* otherwise size().
*/
size_type fwd_excess(size_type i, difference_type rel)const {
size_type j;
// (1) search the small block for the answer
if ((j = algorithm::near_fwd_excess(*m_bp, i+1, rel, t_sml_blk)) > i) {
return j;
}
difference_type desired_excess = excess(i)+rel;
// (2) scan the small blocks of the current median block for an answer
if ((j = fwd_excess_in_med_block(sml_block_idx(i)+1, desired_excess)) != size()) {
return j;
}
// (3) search the min-max tree of the medium blocks for the right med block
if (med_block_idx(i) == m_med_blocks) // if we are already in the last medium block => we are done
return size();
size_type v = m_med_inner_blocks + med_block_idx(i);
// (3 a) go up the tree
while (!is_root(v)) {
if (is_left_child(v)) { // if the node is a left child
v = right_sibling(v); // choose right sibling
if (min_value(v) <= desired_excess and desired_excess <= max_value(v)) // found solution
break;
}
v = parent(v); // choose parent
}
// (3 b) go down the tree
if (!is_root(v)) { // found solution for the query
while (!is_leaf(v)) {
v = left_child(v); // choose left child
if (!(min_value(v) <= desired_excess and desired_excess <= max_value(v))) {
v = right_sibling(v); // choose right child == right sibling of the left child
assert((min_value(v) <= desired_excess and desired_excess <= max_value(v)));
}
}
return fwd_excess_in_med_block((v-m_med_inner_blocks)*t_med_deg, desired_excess);
}
// no solution found
return size();
}
//! Calculate the maximal parenthesis \f$ j<i \f$ with \f$ excess(j) = excess(i)+rel \f$
/*! \param i The index of a parenthesis in the supported sequence.
* \param rel The excess difference to the excess value of parenthesis \f$i\f$.
* \return If there exists a parenthesis \f$i<j\f$ with \f$ excess(j) = excess(i)+rel\f$, \f$j\f$ is returned
* otherwise size().
*/
size_type bwd_excess(size_type i, difference_type rel)const {
size_type j;
if (i == 0) {
return rel == 0 ? -1 : size();
}
// (1) search the small block for the answer
if ((j = algorithm::near_bwd_excess(*m_bp, i-1, rel, t_sml_blk)) < i or j == (size_type)-1) {
return j;
}
difference_type desired_excess = excess(i)+rel;
// (2) scan the small blocks of the current median block for an answer
if ((j = bwd_excess_in_med_block(sml_block_idx(i)-1, desired_excess)) != size()) {
return j;
}
// (3) search the min-max tree of the medium blocks for the right med block
if (med_block_idx(i) == 0) { // if we are already in the first medium block => we are done
if (desired_excess == 0)
return -1;
return size();
}
size_type v = m_med_inner_blocks + med_block_idx(i);
// (3 a) go up the tree
while (!is_root(v)) {
if (is_right_child(v)) { // if the node is a right child
v = left_sibling(v); // choose left sibling
if (min_value(v) <= desired_excess and desired_excess <= max_value(v)) // found solution
break;
}
v = parent(v); // choose parent
}
// (3 b) go down the tree
if (!is_root(v)) { // found solution for the query
while (!is_leaf(v)) {
v = right_child(v); // choose child
if (!(min_value(v) <= desired_excess and desired_excess <= max_value(v))) {
v = left_sibling(v); // choose left child == left sibling of the right child
assert((min_value(v) <= desired_excess and desired_excess <= max_value(v)));
}
}
return bwd_excess_in_med_block((v-m_med_inner_blocks)*t_med_deg+(t_med_deg-1), desired_excess);
} else if (desired_excess == 0) {
return -1;
}
// no solution found
return size();
}
//! Calculate the maximal parentheses \f$ j \leq sml_block_idx\cdot t_sml_blk+(t_sml_blk-1) \f$ with \f$ excess(j)=desired\_excess \f$
size_type bwd_excess_in_med_block(size_type sml_block_idx, difference_type desired_excess)const {
// get the first small block in the medium block right to the current med block
size_type first_sml_block_in_med_block = (med_block_idx(sml_block_idx*t_sml_blk))*t_med_deg;
while ((sml_block_idx+1) and sml_block_idx >= first_sml_block_in_med_block) {
difference_type ex = (sml_block_idx == 0) ? 0 : excess(sml_block_idx*t_sml_blk-1);
difference_type min_ex = ex + (1 - ((difference_type)m_sml_block_min_max[2*sml_block_idx]));
difference_type max_ex = ex + (m_sml_block_min_max[2*sml_block_idx+1] - 1);
if (min_ex <= desired_excess and desired_excess <= max_ex) {
size_type j = algorithm::near_bwd_excess(*m_bp, (sml_block_idx+1)*t_sml_blk-1, desired_excess-excess((sml_block_idx+1)*t_sml_blk), t_sml_blk);
return j;
}
--sml_block_idx;
}
if (sml_block_idx == 0 and desired_excess == 0)
return -1;
return size();
}
//! Calculate the minimal parentheses \f$ j \geq sml_block_idx\cdot t_sml_blk \f$ with \f$ excess(j)=desired\_excess \f$
size_type fwd_excess_in_med_block(size_type sml_block_idx, difference_type desired_excess)const {
// get the first small block in the medium block right to the current med block
size_type first_sml_block_nr_in_next_med_block = (med_block_idx(sml_block_idx*t_sml_blk)+1)*t_med_deg;
if (first_sml_block_nr_in_next_med_block > m_sml_blocks)
first_sml_block_nr_in_next_med_block = m_sml_blocks;
assert(sml_block_idx > 0);
while (sml_block_idx < first_sml_block_nr_in_next_med_block) {
difference_type ex = excess(sml_block_idx*t_sml_blk-1);
difference_type min_ex = ex + (1 - ((difference_type)m_sml_block_min_max[2*sml_block_idx]));
difference_type max_ex = ex + m_sml_block_min_max[2*sml_block_idx+1] - 1;
if (min_ex <= desired_excess and desired_excess <= max_ex) {
size_type j = algorithm::near_fwd_excess(*m_bp, sml_block_idx*t_sml_blk, desired_excess-ex, t_sml_blk);
return j;
}
++sml_block_idx;
}
return size();
}
public:
const rank_type& bp_rank; //!< RS for the underlying BP sequence.
const select_type& bp_select; //!< SS for the underlying BP sequence.
const sml_block_array_type& sml_block_min_max; //!< Small blocks array. Rel. min/max for the small blocks.
const med_block_array_type& med_block_min_max; //!< Array containing the min max tree of the medium blocks.
bp_support_sada():m_bp(NULL), m_size(0), m_sml_blocks(0), m_med_blocks(0), m_med_inner_blocks(0),
bp_rank(m_bp_rank), bp_select(m_bp_select), sml_block_min_max(m_sml_block_min_max), med_block_min_max(m_med_block_min_max)
{}
//! Constructor
explicit bp_support_sada(const bit_vector* bp): m_bp(bp),
m_size(bp==NULL?0:bp->size()),
m_sml_blocks((m_size+t_sml_blk-1)/t_sml_blk),
m_med_blocks((m_size+t_sml_blk*t_med_deg-1)/(t_sml_blk* t_med_deg)),
m_med_inner_blocks(0),
bp_rank(m_bp_rank),
bp_select(m_bp_select),
sml_block_min_max(m_sml_block_min_max),
med_block_min_max(m_med_block_min_max) {
if (t_sml_blk==0) {
throw std::logic_error(util::demangle(typeid(this).name())+": t_sml_blk should be greater than 0!");
}
if (bp == NULL or bp->size()==0)
return;
// initialize rank and select
util::init_support(m_bp_rank, bp);
util::init_support(m_bp_select, bp);
m_med_inner_blocks = 1;
// m_med_inner_blocks = (next power of 2 greater than or equal to m_med_blocks)-1
while (m_med_inner_blocks < m_med_blocks) {
m_med_inner_blocks <<= 1; assert(m_med_inner_blocks!=0);
}
--m_med_inner_blocks;
assert((m_med_inner_blocks == 0) or (m_med_inner_blocks%2==1));
m_sml_block_min_max = int_vector<>(2*m_sml_blocks, 0, bits::hi(t_sml_blk+2)+1);
m_med_block_min_max = int_vector<>(2*(m_med_blocks+m_med_inner_blocks), 0, bits::hi(2*m_size+2)+1);
// calculate min/max excess values of the small blocks and medium blocks
difference_type min_ex = 1, max_ex = -1, curr_rel_ex = 0, curr_abs_ex = 0;
for (size_type i=0; i < m_size; ++i) {
if ((*bp)[i])
++curr_rel_ex;
else
--curr_rel_ex;
if (curr_rel_ex > max_ex) max_ex = curr_rel_ex;
if (curr_rel_ex < min_ex) min_ex = curr_rel_ex;
if ((i+1)%t_sml_blk == 0 or i+1 == m_size) {
size_type sidx = i/t_sml_blk;
m_sml_block_min_max[2*sidx ] = -(min_ex-1);
m_sml_block_min_max[2*sidx + 1] = max_ex+1;
size_type v = m_med_inner_blocks + sidx/t_med_deg;
if ((difference_type)(-(curr_abs_ex + min_ex)+m_size) > ((difference_type)m_med_block_min_max[2*v])) {
assert(curr_abs_ex+min_ex <= min_value(v));
m_med_block_min_max[2*v] = -(curr_abs_ex + min_ex)+m_size;
}
if ((difference_type)(curr_abs_ex + max_ex + m_size) > (difference_type)m_med_block_min_max[2*v + 1])
m_med_block_min_max[2*v + 1] = curr_abs_ex + max_ex + m_size;
curr_abs_ex += curr_rel_ex;
min_ex = 1; max_ex = -1; curr_rel_ex = 0;
}
}
for (size_type v = m_med_block_min_max.size()/2 - 1; !is_root(v); --v) {
size_type p = parent(v);
if (min_value(v) < min_value(p)) // update minimum
m_med_block_min_max[2*p] = m_med_block_min_max[2*v];
if (max_value(v) > max_value(p)) // update maximum
m_med_block_min_max[2*p+1] = m_med_block_min_max[2*v+1];
}
}
//! Copy constructor
bp_support_sada(const bp_support_sada& bp_support):
bp_rank(m_bp_rank), bp_select(m_bp_select), sml_block_min_max(m_sml_block_min_max), med_block_min_max(m_med_block_min_max) {
copy(bp_support);
}
//! Swap method
/*! Swaps the content of the two data structure.
* You have to use set_vector to adjust the supported bit_vector.
* \param bp_support Object which is swapped.
*/
void swap(bp_support_sada& bp_support) {
// m_bp.swap(bp_support.m_bp); use set_vector to set the supported bit_vector
m_bp_rank.swap(bp_support.m_bp_rank);
m_bp_select.swap(bp_support.m_bp_select);
m_sml_block_min_max.swap(bp_support.m_sml_block_min_max);
m_med_block_min_max.swap(bp_support.m_med_block_min_max);
std::swap(m_size, bp_support.m_size);
std::swap(m_sml_blocks, bp_support.m_sml_blocks);
std::swap(m_med_blocks, bp_support.m_med_blocks);
std::swap(m_med_inner_blocks, bp_support.m_med_inner_blocks);
}
//! Assignment operator
bp_support_sada& operator=(const bp_support_sada& bp_support) {
if (this != &bp_support) {
copy(bp_support);
}
return *this;
}
void set_vector(const bit_vector* bp) {
m_bp = bp;
m_bp_rank.set_vector(bp);
m_bp_select.set_vector(bp);
}
/*! Calculates the excess value at index i.
* \param i The index of which the excess value should be calculated.
*/
inline difference_type excess(size_type i)const {
return (m_bp_rank(i+1)<<1)-i-1;
}
/*! Returns the number of opening parentheses up to and including index i.
* \pre{ \f$ 0\leq i < size() \f$ }
*/
size_type rank(size_type i)const {
return m_bp_rank(i+1);
}
/*! Returns the index of the i-th opening parenthesis.
* \param i Number of the parenthesis to select.
* \pre{ \f$1\leq i < rank(size())\f$ }
* \post{ \f$ 0\leq select(i) < size() \f$ }
*/
size_type select(size_type i)const {
#ifdef USE_CACHE
size_type a = 0;
if (select_cache.exists(i, a)) {
return a;
} else {
a = m_bp_select(i);
select_cache.write(i, a);
return a;
}
#endif
return m_bp_select(i);
}
/*! Calculate the index of the matching closing parenthesis to the parenthesis at index i.
* \param i Index of an parenthesis. 0 <= i < size().
* \return * i, if the parenthesis at index i is closing,
* * the position j of the matching closing parenthesis, if a matching parenthesis exists,
* * size() if no matching closing parenthesis exists.
*/
size_type find_close(size_type i)const {
assert(i < m_size);
if (!(*m_bp)[i]) {// if there is a closing parenthesis at index i return i
return i;
}
#ifdef USE_CACHE
size_type a = 0;
if (find_close_cache.exists(i, a)) {
return a;
} else {
a = fwd_excess(i, -1);
find_close_cache.write(i, a);
return a;
}
#endif
return fwd_excess(i, -1);
}
//! Calculate the matching opening parenthesis to the closing parenthesis at position i
/*! \param i Index of a closing parenthesis.
* \return * i, if the parenthesis at index i is closing,
* * the position j of the matching opening parenthesis, if a matching parenthesis exists,
* * size() if no matching closing parenthesis exists.
*/
size_type find_open(size_type i)const {
assert(i < m_size);
if ((*m_bp)[i]) {// if there is a opening parenthesis at index i return i
return i;
}
#ifdef USE_CACHE
size_type a = 0;
if (find_open_cache.exists(i, a)) {
return a;
} else {
size_type bwd_ex = bwd_excess(i,0);
if (bwd_ex == size())
a = size();
else
a = bwd_ex+1;
find_open_cache.write(i, a);
return a;
}
#endif
size_type bwd_ex = bwd_excess(i,0);
if (bwd_ex == size())
return size();
else
return bwd_ex+1;
}
//! Calculate the index of the opening parenthesis corresponding to the closest matching parenthesis pair enclosing i.
/*! \param i Index of an opening parenthesis.
* \return The index of the opening parenthesis corresponding to the closest matching parenthesis pair enclosing i,
* or size() if no such pair exists.
*/
size_type enclose(size_type i)const {
assert(i < m_size);
if (!(*m_bp)[i]) { // if there is closing parenthesis at position i
return find_open(i);
}
size_type bwd_ex = bwd_excess(i, -2);
if (bwd_ex == size())
return size();
else
return bwd_ex+1;
}
//! The range restricted enclose operation for parentheses pairs \f$(i,\mu(i))\f$ and \f$(j,\mu(j))\f$.
/*! \param i First opening parenthesis.
* \param j Second opening parenthesis \f$ i<j \wedge findclose(i) < j \f$.
* \return The smallest index, say k, of an opening parenthesis such that findclose(i) < k < j and
* findclose(j) < findclose(k). If such a k does not exists, restricted_enclose(i,j) returns size().
* \par Time complexity
* \f$ \Order{block\_size} \f$
*/
size_type rr_enclose(const size_type i, const size_type j)const {
assert(j < m_size);
assert((*m_bp)[i]==1 and (*m_bp)[j]==1);
const size_type mip1 = find_close(i)+1;
if (mip1 >= j)
return size();
return rmq_open(mip1, j);
}
/*! Search the interval [l,r-1] for an opening parenthesis, say i, such that find_close(i) >= r.
* \param l The left end (inclusive) of the interval to search for the result.
* \param r The right end (exclusive) of the interval to search for the result.
* \return The minimal opening parenthesis i with \f$ \ell \leq i < r \f$ and \f$ find_close(i) \geq r \f$;
* if no such i exists size() is returned.
* \par Time complexity
* \f$ \Order{block\_size} \f$
*/
size_type rmq_open(const size_type l, const size_type r)const {
assert(r < m_bp->size());
if (l >= r)
return size();
size_type res = rmq(l, r-1);
assert(res>=l and res<=r-1);
if ((*m_bp)[res] == 1) { // The parenthesis with minimal excess is opening
assert(find_close(res) >= r);
return res;
} else {
res = res+1; // go to the next parenthesis to the right
if (res < r) { // The parenthesis with minimal excess if closing and the next opening parenthesis is less than r
assert((*m_bp)[res] == 1);
size_type ec = enclose(res);
if (ec < l or ec == size()) {
assert(find_close(res)>=r);
return res;
} else {
assert(find_close(ec)>=r);
return ec;
}
} else if (res == r) {
size_type ec = enclose(res); // if m_bp[res]==0 => find_open(res), if m_bp[res]==1 => enclose(res)
if (ec >= l) {
assert(excess(ec)==excess(res-1));
return ec;
}
}
}
return size();
}
size_type median_block_rmq(size_type l_sblock, size_type r_sblock, bit_vector::difference_type& min_ex)const {
assert(l_sblock <= r_sblock+1);
size_type pos_min_block = (size_type)-1;
difference_type e = 0;
if (l_sblock == 0) {
if (sml_min_value(0) <= min_ex) {
pos_min_block = 0;
min_ex = sml_min_value(0);
}
l_sblock = 1;
}
for (size_type i=l_sblock; i <= r_sblock; ++i) {
if ((e = (excess(i*t_sml_blk-1) + sml_min_value(i))) <= min_ex) {
pos_min_block = i;
min_ex = e;
}
}
return pos_min_block;
}
//! The range minimum query (rmq) returns the index of the parenthesis with minimal excess in the range \f$[l..r]\f$
/*! \param l The left border of the interval \f$[l..r]\f$ (\f$l\leq r\f$).
* \param r The right border of the interval \f$[l..r]\f$ (\f$l \leq r\f$).
*/
size_type rmq(size_type l, size_type r)const {
assert(l<=r);
size_type sbl = sml_block_idx(l);
size_type sbr = sml_block_idx(r);
difference_type min_rel_ex = 0;
if (sbl == sbr) { // if l and r are in the same small block
return algorithm::near_rmq(*m_bp, l, r, min_rel_ex);
} else {
difference_type min_ex = 0; // current minimal excess value
size_type min_pos = 0; // current min pos
enum min_pos_type {POS, SMALL_BLOCK_POS, MEDIUM_BLOCK_POS};
enum min_pos_type pos_type = POS; // current
min_pos = algorithm::near_rmq(*m_bp, l, (sbl+1)*t_sml_blk-1, min_rel_ex); // scan the leftmost small block of l
assert(min_pos >= l);
min_ex = excess(l) + min_rel_ex;
size_type mbl = med_block_idx(l);
size_type mbr = med_block_idx(r); assert(mbl <= mbr);
size_type temp = median_block_rmq(sbl+1, std::min((mbl+1)*t_med_deg-1, sbr-1), min_ex); // scan the medium block of l
if (temp != (size_type)-1) {
assert(temp*t_sml_blk >= l and temp*t_sml_blk <= r);
min_pos = temp;
assert(min_pos >= 0 and min_pos < m_sml_blocks);
pos_type = SMALL_BLOCK_POS;
}
#if 0
// sequential scan the medium blocks
for (size_type v=mbl+1+m_med_inner_blocks; v < mbr + m_med_inner_blocks; ++v) {
assert(is_leaf(v));
if (min_value(v) <= min_ex) {
min_ex = min_value(v);
min_pos = v;
assert(min_pos-m_med_inner_blocks >= 0 and min_pos < m_med_blocks-m_med_inner_blocks);
pos_type = MEDIUM_BLOCK_POS;
}
}
#else
// tree search in the min max tree of the medium blocks
if (mbr-mbl > 1) {
size_type v = mbl + 1 + m_med_inner_blocks;
size_type rcb = mbl + 1; // rightmost covered block
size_type h = 0; // subtree height
while (rcb < mbr-1) { // go up the tree until the rightmost covered block >= mbr-1
if (min_value(v) <= min_ex) {
min_ex = min_value(v); min_pos = v; pos_type = MEDIUM_BLOCK_POS;
}
if (is_right_child(v)) { // v is a right child
h += 1;
rcb += (1<<h);
v = right_sibling(parent(v));
} else { // it is a left child
rcb += (1<<h);
h += 1;
v = parent(v);
}
}
if (rcb <= mbr-1 and min_value(v) <= min_ex) {
min_ex = min_value(v); min_pos = v; pos_type = MEDIUM_BLOCK_POS;
}
assert(node_exists(v));
assert(rcb >= mbr-1);
while (rcb != mbr-1) { // go down the tree until the rightmost covered block = mbr-1
assert(h != (size_type)-1);
if (rcb > mbr-1) {
h = h-1;
rcb = rcb - (1<<h);
v = left_child(v);
} else { // rcb < mbr-1
h = h-1;
rcb = rcb + (1<<h);
v = right_sibling(right_child(v));
}
if (rcb <= mbr-1 and min_value(v) <= min_ex) {
min_ex = min_value(v); min_pos = v; pos_type = MEDIUM_BLOCK_POS;
}
}
if (pos_type == MEDIUM_BLOCK_POS) {
while (!is_leaf(min_pos)) {
min_pos = right_child(min_pos);
if (!node_exists(min_pos) or min_value(min_pos) > min_ex)
min_pos = left_sibling(min_pos);
}
}
}
#endif
// search in the medium block of r
temp = median_block_rmq(std::max(mbr*t_med_deg, sbl+1), sbr-1, min_ex); // scan the medium block of r
if (temp != (size_type)-1) {
assert(temp*t_sml_blk >= l and temp*t_sml_blk <= r);
min_pos = temp;
pos_type = SMALL_BLOCK_POS;
}
// search in the small block of r
temp = algorithm::near_rmq(*m_bp, sbr*t_sml_blk, r, min_rel_ex); // scan the small block of r
if ((excess(sbr*t_sml_blk) + min_rel_ex) <= min_ex) { // if it contains the minimum return its position
assert(temp>=l and temp<=r);
return temp;
}
// if the found minimum lies in a medium block => find its small block
if (pos_type == MEDIUM_BLOCK_POS) {
min_pos = min_pos - m_med_inner_blocks;
temp = median_block_rmq(min_pos*t_med_deg, (min_pos+1)*t_med_deg-1, min_ex);
assert(temp != (size_type)-1); // assert that we find a solution
assert(temp*t_sml_blk >= l and temp*t_sml_blk <= r);
min_pos = temp;
pos_type = SMALL_BLOCK_POS;
}
if (pos_type == SMALL_BLOCK_POS) {
min_pos = algorithm::near_rmq(*m_bp, min_pos*t_sml_blk, (min_pos+1)*t_sml_blk-1, min_rel_ex);
assert(min_pos >=l and min_pos <= r);
}
return min_pos;
}
}
//! The range restricted enclose operation
/*! \param i Index of an opening parenthesis.
* \param j Index of an opening parenthesis \f$ i<j \wedge findclose(i) < j \f$.
* \return The minimal opening parenthesis, say k, such that \f$ findclose(i) < k < j\f$ and
* findclose(j) < findclose(k). If such a k does not exists, restricted_enclose(i,j) returns size().
* \par Time complexity
* \f$ \Order{size()}\f$ in the worst case.
*/
size_type rr_enclose_naive(size_type i, size_type j)const {
assert(j > i and j < m_size);
assert((*m_bp)[i]==1 and (*m_bp)[j]==1);
size_type mi = find_close(i); // matching parenthesis to i
assert(mi > i and mi < j);
assert(find_close(j) > j);
size_type k = enclose(j);
if (k == m_size or k < i) // there exists no opening parenthesis at position mi<k<j.
return m_size;
size_type kk;
do {
kk = k;
k = enclose(k);
} while (k != m_size and k > mi);
return kk;
}
//! The double enclose operation
/*! \param i Index of an opening parenthesis.
* \param j Index of an opening parenthesis \f$ i<j \wedge findclose(i) < j \f$.
* \return The maximal opening parenthesis, say k, such that \f$ k<j \wedge k>findclose(j) \f$.
* If such a k does not exists, double_enclose(i,j) returns size().
*/
size_type double_enclose(size_type i, size_type j)const {
assert(j > i);
assert((*m_bp)[i]==1 and (*m_bp)[j]==1);
size_type k = rr_enclose(i, j);
if (k == size())
return enclose(j);
else
return enclose(k);
}
//! Return the number of zeros which procede position i in the balanced parentheses sequence.
/*! \param i Index of an parenthesis.
*/
size_type preceding_closing_parentheses(size_type i)const {
assert(i < m_size);
if (!i) return 0;
size_type ones = m_bp_rank(i);
if (ones) { // ones > 0
assert(m_bp_select(ones) < i);
return i - m_bp_select(ones) - 1;
} else {
return i;
}
}
/*! The size of the supported balanced parentheses sequence.
* \return the size of the supported balanced parentheses sequence.
*/
size_type size() const {
return m_size;
}
//! Serializes the bp_support_sada to a stream.
/*!
* \param out The outstream to which the data structure is written.
* \return The number of bytes written to out.
*/
size_type serialize(std::ostream& out, structure_tree_node* v=NULL, std::string name="")const {
structure_tree_node* child = structure_tree::add_child(v, name, util::class_name(*this));
size_type written_bytes = 0;
written_bytes += write_member(m_size, out, child, "size");
written_bytes += write_member(m_sml_blocks, out, child, "sml_block_cnt");
written_bytes += write_member(m_med_blocks, out, child, "med_block_cnt");
written_bytes += write_member(m_med_inner_blocks, out, child, "med_inner_blocks");
written_bytes += m_bp_rank.serialize(out, child, "bp_rank");
written_bytes += m_bp_select.serialize(out, child, "bp_select");
written_bytes += m_sml_block_min_max.serialize(out, child, "sml_blocks");
written_bytes += m_med_block_min_max.serialize(out, child, "med_blocks");
structure_tree::add_size(child, written_bytes);
return written_bytes;
}
//! Load the bp_support_sada for a bit_vector v.
/*!
* \param in The instream from which the data strucutre is read.
* \param bp Bit vector representing a balanced parentheses sequence that is supported by this data structure.
*/
void load(std::istream& in, const bit_vector* bp) {
m_bp = bp;
read_member(m_size, in);
assert(m_size == bp->size());
read_member(m_sml_blocks, in);
read_member(m_med_blocks, in);
read_member(m_med_inner_blocks, in);
m_bp_rank.load(in, m_bp);
m_bp_select.load(in, m_bp);
m_sml_block_min_max.load(in);
m_med_block_min_max.load(in);
}
};
}// end namespace
#endif