-
Notifications
You must be signed in to change notification settings - Fork 16
/
baseline_keras.py
34 lines (28 loc) · 1.77 KB
/
baseline_keras.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
from keras.layers import Embedding, LSTM, Dense, Dropout, Lambda, Flatten, Input, Bidirectional,Conv2D, Conv1D, MaxPooling1D, GlobalMaxPooling1D
from keras.models import Sequential, load_model, model_from_config, Model
import keras.backend as K
def get_model(Hidden_dim1=300, Hidden_dim2=64, return_sequences = True, dropout=0.5,
recurrent_dropout=0.4, input_size=768, activation='relu', loss_function = 'mean_squared_error',
optimizer= "adam", model_name = "BiLSTM", output_dims = 1):
"""Define the model."""
model = Sequential()
if model_name == 'BiLSTM':
model.add(Bidirectional(LSTM(Hidden_dim1,return_sequences=return_sequences , dropout=0.4, recurrent_dropout=recurrent_dropout), input_shape=[1, input_size]))
model.add(Bidirectional(LSTM(Hidden_dim2, recurrent_dropout=recurrent_dropout)))
if model_name == "LSTM":
model.add(LSTM(Hidden_dim1, dropout=0.4, recurrent_dropout=recurrent_dropout, input_shape=[1, input_size], return_sequences=return_sequences))
model.add(LSTM(Hidden_dim2, recurrent_dropout=recurrent_dropout))
if model_name == "CNN":
inputs = Input(shape=(768, 1))
x = Conv1D(64, 3, strides=1, padding='same', activation=activation)(inputs)
# Cuts the size of the output in half, maxing over every 2 inputs
x = MaxPooling1D(pool_size=2)(x)
x = Conv1D(128, 3, strides=1, padding='same', activation=activation)(x)
x = GlobalMaxPooling1D()(x)
outputs = Dense(output_dims, activation=activation)(x)
model = Model(inputs=inputs, outputs=outputs, name='CNN')
model.add(Dropout(dropout))
model.add(Dense(1, activation=activation))
model.compile(loss=loss_function, optimizer=optimizer, metrics=['mae'])
model.summary()
return model