-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_peg.py
204 lines (157 loc) · 7.08 KB
/
train_peg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
from dataloader import ImiDataset_peg
from torch.utils.data import DataLoader
import torch
from torch import nn
import numpy as np
import random
from models.model_peg import ConcatModel, MULSA, MSBot
import os
from config import parse_args
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
def set_tokens(args, model, dataloader):
all_num = [0,0,0]
all_token = torch.zeros((3, 128)).cuda()
with torch.no_grad():
model.eval()
for step, (depth, image, tactile, label, actions, score_weight, stage) in enumerate(dataloader):
depth = depth.squeeze(1).cuda()
image = image.squeeze(1).cuda()
tactile = tactile.squeeze(1).cuda()
actions = actions.squeeze(1).cuda()
state_tokens = model.forward_state(depth.float(), image.float(), tactile.float(), actions.float())
state_tokens = state_tokens.squeeze(1)
for i in range(len(stage)):
all_token[stage[i]] += state_tokens[i]
all_num[stage[i]] += 1.0
for i in range(3):
all_token[i] /= all_num[i]
model.all_stage_tokens.data=all_token
print('Stage Tokens init success')
def train_epoch(args, epoch, model, dataloader, optimizer, scheduler, writer=None):
criterion = nn.CrossEntropyLoss()
model.train()
print("Start training ... ")
_loss = 0
_loss_score = 0
warmup_flag = False
if epoch < args.warmup_epochs:
warmup_flag=True
for step, (depth, image, tactile, label, actions, score_weight, stage) in enumerate(dataloader):
depth = depth.squeeze(1).cuda()
image = image.squeeze(1).cuda()
tactile = tactile.squeeze(1).cuda()
actions = actions.squeeze(1).cuda()
score_weight = score_weight.cuda()
label = label.cuda()
optimizer.zero_grad()
out, score = model(depth.float(), image.float(), tactile.float(), actions.float(), warmup=warmup_flag)
if warmup_flag:
loss = criterion(out, label)
else:
if args.model == 'MSBot':
loss_score = args.penalty_intensity * torch.mean(score * score_weight)
else:
loss_score = torch.zeros(1).cuda()
_loss_score += loss_score.item()
loss = criterion(out, label) + loss_score
loss.backward()
optimizer.step()
_loss += loss.item()
scheduler.step()
print('Loss Score:', _loss_score / len(dataloader))
return _loss / len(dataloader)
def valid(args, model, dataloader, epoch):
softmax = nn.Softmax(dim=1)
criterion = nn.CrossEntropyLoss()
n_classes = 7
_loss = 0
warmup_flag = False
if epoch < args.warmup_epochs:
warmup_flag=True
with torch.no_grad():
model.eval()
num = [0.0 for _ in range(n_classes)]
acc = [0.0 for _ in range(n_classes)]
for step, (depth, image, tactile, label, actions, score_weight, stage) in enumerate(dataloader):
depth = depth.squeeze(1).cuda()
image = image.squeeze(1).cuda()
tactile = tactile.squeeze(1).cuda()
actions = actions.squeeze(1).cuda()
out, score = model(depth.float(), image.float(), tactile.float(), actions.float(), warmup=warmup_flag)
loss = criterion(out, label.cuda())
_loss += loss.item()
prediction = softmax(out)
for i in range(image.shape[0]):
ma = np.argmax(prediction[i].cpu().data.numpy())
num[label[i]] += 1.0
if label[i] == ma:
acc[label[i]] += 1.0
print("Val Loss: {:.4f}, Acc 0: {:.4f}, Acc 1: {:.4f}, Acc 2: {:.4f}, Acc 3: {:.4f}, Acc 4: {:.4f}, Acc 5: {:.4f}, Acc 6: {:.4f}".format(_loss / len(dataloader)
, acc[0]/num[0], acc[1]/num[1]
, acc[2]/num[2], acc[3]/num[3], acc[4]/num[4]
, acc[5]/num[5], acc[6]/num[6]))
return sum(acc) / sum(num), _loss / len(dataloader)
def main(args):
setup_seed(args.seed)
if args.model == 'Concat':
model = ConcatModel().cuda()
elif args.model == 'MULSA':
model = MULSA().cuda()
elif args.model == 'MSBot':
model = MSBot().cuda()
else:
print('Model not found')
exit(0)
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
scheduler = torch.optim.lr_scheduler.StepLR(
optimizer, step_size=3, gamma=0.9
)
train_dataset = ImiDataset_peg(mode='train', seq_len=args.seq_len, soft_boundary=args.gamma)
test_dataset = ImiDataset_peg(mode='test', seq_len=args.seq_len, soft_boundary=args.gamma)
train_dataloader = DataLoader(train_dataset, batch_size=args.batch_size,
shuffle=True, num_workers=args.num_workers, pin_memory=True)
test_dataloader = DataLoader(test_dataset, batch_size=args.batch_size,
shuffle=False, num_workers=args.num_workers, pin_memory=True)
EPOCHS = args.epochs
best_acc = 0.0
best_vloss = 100
if os.path.exists('checkpoints') == False:
os.mkdir('checkpoints')
if os.path.exists('checkpoints/peg') == False:
os.mkdir('checkpoints/peg')
if args.model_dir != None and args.model_dir != '':
ckpt_dir = 'checkpoints/peg/'+args.model_dir+'/'
else:
ckpt_dir = 'checkpoints/peg/'+args.model+'/'
if os.path.exists('ckpt_dir') == False:
os.mkdir(ckpt_dir)
for epoch in range(EPOCHS):
if epoch == args.warmup_epochs and args.model == 'MSBot':
set_tokens(args, model, train_dataloader)
print('Epoch: {}: '.format(epoch))
batch_loss = train_epoch(args, epoch, model, train_dataloader, optimizer, scheduler)
acc, vloss = valid(args, model, test_dataloader, epoch)
if vloss < best_vloss:
best_vloss = float(vloss)
saved_dict = {'model': model.state_dict()}
model_name = ckpt_dir+'model_'+str(epoch)+'_vloss.pth'
torch.save(saved_dict, model_name)
print('The model has been saved at ' + model_name)
if acc > best_acc:
best_acc = float(acc)
saved_dict = {'model': model.state_dict()}
model_name = ckpt_dir+'model_'+str(epoch)+'_acc.pth'
torch.save(saved_dict, model_name)
print('The model has been saved at ' + model_name)
print("Loss: {:.4f}, Acc: {:.4f}".format(batch_loss, acc))
else:
print("Loss: {:.4f}, Acc: {:.4f}, Best Acc: {:.4f}".format(batch_loss, acc, best_acc))
if __name__ == "__main__":
args = parse_args()
args = args.parse_args()
main(args)