forked from JunoLab/Weave.jl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
FIR_design_plots.jl
85 lines (63 loc) · 2.41 KB
/
FIR_design_plots.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
#' ---
#' title: FIR filter design with Julia
#' author: Matti Pastell
#' date: 21th April 2016
#' ---
#' # Introduction
#' This an example of a julia script that can be published using
#' [Weave](http://weavejl.mpastell.com/dev/usage/).
#' The script can be executed normally using Julia
#' or published to HTML or pdf with Weave.
#' Text is written in markdown in lines starting with "`#'` " and code
#' is executed and results are included in the published document.
#' Notice that you don't need to define chunk options, but you can using
#' `#+`. just before code e.g. `#+ term=True, caption='Fancy plots.'`.
#' If you're viewing the published version have a look at the
#' [source](FIR_design_plots.jl) to see the markup.
#' # FIR Filter Design
#' We'll implement lowpass, highpass and ' bandpass FIR filters. If
#' you want to read more about DSP I highly recommend [The Scientist
#' and Engineer's Guide to Digital Signal
#' Processing](http://www.dspguide.com/) which is freely available
#' online.
#' ## Calculating frequency response
#' DSP.jl package doesn't (yet) have a method to calculate the
#' the frequency response of a FIR filter so we define it:
using Plots, DSP
gr()
function FIRfreqz(b::Array, w = range(0, stop=π, length=1024))
n = length(w)
h = Array{ComplexF32}(undef, n)
sw = 0
for i = 1:n
for j = 1:length(b)
sw += b[j]*exp(-im*w[i])^-j
end
h[i] = sw
sw = 0
end
return h
end
#' ## Design Lowpass FIR filter
#' Designing a lowpass FIR filter is very simple to do with DSP.jl, all you
#' need to do is to define the window length, cut off frequency and the
#' window. We will define a lowpass filter with cut off frequency at 5Hz for a signal
#' sampled at 20 Hz.
#' We will use the Hamming window, which is defined as:
#' $w(n) = \alpha - \beta\cos\frac{2\pi n}{N-1}$, where $\alpha=0.54$ and $\beta=0.46$
fs = 20
f = digitalfilter(Lowpass(5, fs = fs), FIRWindow(hamming(61)))
w = range(0, stop=pi, length=1024)
h = FIRfreqz(f, w)
#' ## Plot the frequency and impulse response
#' The next code chunk is executed in term mode, see the [script](FIR_design.jl) for syntax.
#+ term=true
h_db = log10.(abs.(h));
ws = w/pi*(fs/2)
#+
plot(ws, h_db,
xlabel = "Frequency (Hz)", ylabel = "Magnitude (db)")
#' And again with default options
h_phase = unwrap(-atan.(imag.(h),real.(h)))
plot(ws, h_phase,
xlabel = "Frequency (Hz)", ylabel = "Phase (radians)")