-
Notifications
You must be signed in to change notification settings - Fork 5
/
GenGeomAlgs.cpp
486 lines (431 loc) · 12.8 KB
/
GenGeomAlgs.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
/**
* GeoDa TM, Copyright (C) 2011-2015 by Luc Anselin - all rights reserved
*
* This file is part of GeoDa.
*
* GeoDa is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* GeoDa is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <algorithm>
#include <vector>
#include <limits>
#include <math.h>
#include "GenGeomAlgs.h"
double GenGeomAlgs::DegToRad(double deg)
{
return deg * pi_ovr_180;
}
double GenGeomAlgs::RadToDeg(double rad)
{
return rad * d180_ovr_pi;
}
double GenGeomAlgs::NormLonDeg(double lon)
{
bool neg = lon < 0;
if (neg) lon = -lon;
lon += 180.0;
lon = fmod(lon,360.0);
lon -= 180.0;
if (neg) lon = -lon;
return lon;
}
double GenGeomAlgs::NormLonRad(double lon)
{
bool neg = lon < 0;
if (neg) lon = -lon;
lon += pi;
lon = fmod(lon,pi_x_2);
lon -= pi;
if (neg) lon = -lon;
return lon;
}
double GenGeomAlgs::NormLatDeg(double lat)
{
bool neg = lat < 0;
if (neg) lat = -lat;
if (lat > 90 && lat <= 270) {
lat = 180.0 - lat;
} else if (lat > 270) {
lat -= 360.0;
}
if (neg) lat = -lat;
return lat;
}
double GenGeomAlgs::NormLatRad(double lat)
{
bool neg = lat < 0;
if (neg) lat = -lat;
if (lat > pi_ovr_2 && lat <= pi_x_1_5) {
lat = pi - lat;
} else if (lat > pi_x_1_5) {
lat -= pi_x_2;
}
if (neg) lat = -lat;
return lat;
}
void GenGeomAlgs::LongLatDegToUnit(const double& lon, const double& lat,
double& x, double& y, double& z)
{
// unit sphere -> radius is 1
double lat_r = DegToRad(lat);
double lon_r = DegToRad(lon);
double c_lat = cos(lat_r);
x = c_lat * cos(lon_r);
y = c_lat * sin(lon_r);
z = sin(lat_r);
}
void GenGeomAlgs::LongLatRadToUnit(const double& lon, const double& lat,
double& x, double& y, double& z)
{
// unit sphere -> radius is 1
double c_lat = cos(lat);
x = c_lat * cos(lon);
y = c_lat * sin(lon);
z = sin(lat);
}
void GenGeomAlgs::UnitToLongLatDeg(const double& x, const double& y,
const double& z,
double& lon, double& lat)
{
// unit sphere -> radius is 1
lat = RadToDeg(NormLatRad(asin(z)));
lon = RadToDeg(NormLonRad(atan2(y,x)));
}
void GenGeomAlgs::UnitToLongLatRad(const double& x, const double& y,
const double& z,
double& lon, double& lat)
{
// unit sphere -> radius is 1
lat = NormLatRad(asin(z));
lon = NormLonRad(atan2(y,x));
}
double GenGeomAlgs::UnitDistToRad(double d)
{
if (d<0) d = -d;
if (d >= 2) return pi;
return acos((2.0-d*d)/2.0);
}
double GenGeomAlgs::UnitDistToDeg(double d)
{
return RadToDeg(UnitDistToRad(d));
}
double GenGeomAlgs::RadToUnitDist(double r)
{
if (r<0) r = -r;
r = ShortestRad(r);
if (r >= pi) return 2;
double t = (2.0-2.0*cos(r));
if (t <= 0) return 0;
return sqrt(t);
}
double GenGeomAlgs::DegToUnitDist(double r)
{
return RadToUnitDist(DegToRad(r));
}
double GenGeomAlgs::ShortestRad(double r)
{
if (r < 0) r = -r;
if (r <= pi) return r;
r = fmod(r, 2.0*pi);
if (r <= pi) return r;
return 2.0*pi - r;
}
double GenGeomAlgs::ShortestDeg(double d)
{
if (d < 0) d = -d;
if (d <= 180.0) return d;
d = fmod(d, 360.0);
if (d <= 180.0) return d;
return 360.0 - d;
}
double GenGeomAlgs::ComputeEucDist(double x1, double y1, double x2, double y2)
{
return sqrt((x2 - x1)*(x2 - x1) + (y2 - y1)*(y2 - y1));
}
/*
Notes on ComputeArcDistMi:
In the equation below, the 69.11 factor is actually the distance,
in miles, between each degree of latitude for the WGS
84 sphere. Remember that this equation is just an approximation
because the earth is actually an ellipsoid. Because of
this, the distance between latitudes will increase as the latitude
increases. The distance at 0 on the WGS 84 ellipsoid is
actually 68.71 miles while it is 69.40 miles at 90 deg.
*/
double GenGeomAlgs::ComputeArcDistMi(double lon1, double lat1, double lon2, double lat2)
{
return ComputeArcDistRad(lon1, lat1, lon2, lat2) * earth_radius_mi;
}
double GenGeomAlgs::ComputeArcDistKm(double lon1, double lat1, double lon2, double lat2)
{
return ComputeArcDistRad(lon1, lat1, lon2, lat2) * earth_radius_km;
}
double GenGeomAlgs::ComputeArcDistRad(double lon1, double lat1, double lon2, double lat2)
{
return LonLatRadDistRad(DegToRad(lon1), DegToRad(lat1), DegToRad(lon2), DegToRad(lat2));
}
double GenGeomAlgs::LonLatRadDistRad(double lon1, double lat1, double lon2, double lat2)
{
// this is the haversine formula which is particularly well-conditioned
double d_lat_ovr_2 = (lat2-lat1)/2.0;
double sin_sq_d_lat_ovr_2 = sin(d_lat_ovr_2);
sin_sq_d_lat_ovr_2 *= sin_sq_d_lat_ovr_2;
double d_lon_ovr_2 = (lon2-lon1)/2.0;
double sin_sq_d_lon_ovr_2 = sin(d_lon_ovr_2);
sin_sq_d_lon_ovr_2 *= sin_sq_d_lon_ovr_2;
double a = sin_sq_d_lat_ovr_2 +
cos(lat1)*cos(lat2) * sin_sq_d_lon_ovr_2;
return 2.0* atan2(sqrt(a),sqrt(1.0-a));
}
double GenGeomAlgs::ComputeArcDistDeg(double lon1, double lat1, double lon2, double lat2)
{
return RadToDeg(ComputeArcDistRad(lon1, lat1, lon2, lat2));
}
double GenGeomAlgs::EarthRadToKm(double radians)
{
return radians * earth_radius_km;
}
double GenGeomAlgs::EarthRadToMi(double radians)
{
return radians * earth_radius_mi;
}
double GenGeomAlgs::EarthKmToRad(double d)
{
return d/earth_radius_km;
}
double GenGeomAlgs::EarthMiToRad(double d)
{
return d/earth_radius_mi;
}
/*
* Fhe following four functions: findArea, ComputeArea2D,
* and ComputePerimeter2D are borrowed from FastArea.c++
*
* From the paper:
*
* Daniel Sunday
* "Fast Polygon Area and Newell Normal Computation"
* journal of graphics tools, 7(2):9-13, 2002
*
*/
// assume vertex coordinates are in arrays x[], y[], and z[]
// with room to duplicate the first two vertices at the end
// return the signed area of a 2D polygon
double GenGeomAlgs::findArea(int n, double *x, double *y) // 2D polygon
{
// guarantee the first two vertices are also at array end
x[n] = x[0];
y[n] = y[0];
x[n+1] = x[1];
y[n+1] = y[1];
double sum = 0.0;
double *xptr = x+1, *ylow = y, *yhigh = y+2;
for (int i=1; i <= n; i++) {
sum += (*xptr++) * ( (*yhigh++) - (*ylow++) );
}
return (sum / 2.0);
}
// output unit normal
double GenGeomAlgs::ComputeArea2D(int n, double *x, double *y)
{
// get the Newell normal
double *z = new double [n+2];
for (int i=0;i<n+2; i++) z[i] = 0.0;
double nwx = GenGeomAlgs::findArea(n, y, z);
double nwy = GenGeomAlgs::findArea(n, z, x);
double nwz = GenGeomAlgs::findArea(n, x, y);
// get length of the Newell normal
double nlen = sqrt( nwx*nwx + nwy*nwy + nwz*nwz );
return nlen; // area of polygon = length of Newell normal
}
double GenGeomAlgs::ComputePerimeter2D(int n, double *x, double *y)
{
double Peri = GenGeomAlgs::ComputeEucDist(x[0],y[0],x[n-1],y[n-1]);
for (int i=0; i < n-1; i++) {
Peri += GenGeomAlgs::ComputeEucDist(x[i],y[i],x[i+1],y[i+1]);
}
return Peri;
}
namespace GenGeomAlgs {
// Based on http://en.wikipedia.org/wiki/Cohen-Sutherland_algorithm
const int INSIDE = 0; // 0000
const int LEFT = 1; // 0001
const int RIGHT = 2; // 0010
const int BOTTOM = 4; // 0100
const int TOP = 8; // 1000
int ComputeOutCode(const double& x, const double& y,
const double& xmin, const double& ymin,
const double& xmax, const double& ymax)
{
int code = INSIDE; // initialised as being inside of clip window
if (x < xmin) // to the left of clip window
code |= LEFT;
else if (x > xmax) // to the right of clip window
code |= RIGHT;
if (y < ymin) // below the clip window
code |= BOTTOM;
else if (y > ymax) // above the clip window
code |= TOP;
return code;
}
}
// Cohen-Sutherland clipping algorithm clips a line from
// P0 = (x0, y0) to P1 = (x1, y1) against a rectangle with
// diagonal from (xmin, ymin) to (xmax, ymax).
// Based on http://en.wikipedia.org/wiki/Cohen-Sutherland_algorithm
// return false if line segment outside of bounding box
bool GenGeomAlgs::ClipToBB(double& x0, double& y0, double& x1, double& y1,
const double& xmin, const double& ymin,
const double& xmax, const double& ymax)
{
// compute outcodes for P0, P1,
// and whatever point lies outside the clip rectangle
int outcode0 = ComputeOutCode(x0, y0, xmin, ymin, xmax, ymax);
int outcode1 = ComputeOutCode(x1, y1, xmin, ymin, xmax, ymax);
bool accept = false;
while (true) {
if (!(outcode0 | outcode1)) {
// Bitwise OR is 0. Trivially accept and get out of loop
accept = true;
break;
} else if (outcode0 & outcode1) {
// Bitwise AND is not 0. Trivially reject and get out of loop
break;
} else {
// failed both tests, so calculate the line segment to clip
// from an outside point to an intersection with clip edge
double x=0, y=0;
// At least one endpoint is outside the clip rectangle; pick it.
int outcodeOut = outcode0 ? outcode0 : outcode1;
// Now find the intersection point;
// use formulas y = y0 + slope * (x - x0),
// x = x0 + (1 / slope) * (y - y0)
if (outcodeOut & TOP) {
// point is above the clip rectangle
x = x0 + (x1 - x0) * (ymax - y0) / (y1 - y0);
y = ymax;
} else if (outcodeOut & BOTTOM) {
// point is below the clip rectangle
x = x0 + (x1 - x0) * (ymin - y0) / (y1 - y0);
y = ymin;
} else if (outcodeOut & RIGHT) {
// point is to the right of clip rectangle
y = y0 + (y1 - y0) * (xmax - x0) / (x1 - x0);
x = xmax;
} else if (outcodeOut & LEFT) {
// point is to the left of clip rectangle
y = y0 + (y1 - y0) * (xmin - x0) / (x1 - x0);
x = xmin;
}
// Now we move outside point to intersection point to clip
// and get ready for next pass.
if (outcodeOut == outcode0) {
x0 = x;
y0 = y;
outcode0 = ComputeOutCode(x0, y0, xmin, ymin, xmax, ymax);
} else {
x1 = x;
y1 = y;
outcode1 = ComputeOutCode(x1, y1, xmin, ymin, xmax, ymax);
}
}
}
return accept;
}
/** A ray is defined by two points (x0, y0) and (x1, y1) that are within the
given bounding box (BB) extent. The ray is anchored at (x0, y0) and extends
in the direction of (x1, y1). If (x0, y0) or (x1, y1) are outside the BB,
false is returned. Otherwise, the ray is extended to it's intersection
point with the BB and this point is retruned as (x2, y2). True is returned
on success. */
bool GenGeomAlgs::ExtendRayToBB(double x0, double y0, double x1, double y1,
double& x2, double& y2,
const double xmin, const double ymin,
const double xmax, const double ymax)
{
// check if points are nearly identical
if (nearlyEqual(x0,x1) && nearlyEqual(y0,y1)) return false;
// check if any points outisde of BB
if (x0<xmin || y0<ymin || x1<xmin || y1<ymin ||
x0>xmax || y0>ymax || x1>xmax || y1>ymax) return false;
// check for easy special cases of nearly horizontal or nearly vertical lines
if (nearlyEqual(x0, x1)) {
// simply extend y coordinate to BB limits
x2 = x0;
y2 = (y0 < y1) ? ymax : ymin;
return true;
}
if (nearlyEqual(y0, y1)) {
// simply extend x coordinate to BB limits
x2 = (x0 < x1) ? xmax : xmin;
y2 = y0;
return true;
}
// At this point we are not dealing with a special case. In particular,
// we shouldn't have to worry about dividing by zero when calculating
// line slopes.
// Let y = s*x + t be equation for line through original points.
// Or, solving for x we get: x = (y-t)/s
// Calculate slope a and y-intercept b as follows:
double s = (y1-y0)/(x1-x0);
double t = y0 - s*x0;
double b0x, b0y, b1x, b1y;
if (x0 < x1) {
// ray travels to the right and intersects xmax
b0x = xmax;
b0y = s*xmax+t;
if (y0 < y1) {
// ray travels up and intersects ymax
b1y = ymax;
} else {
// ray travels down and intersects ymin
b1y = ymin;
}
b1x = (b1y-t)/s;
if (b0x < b1x) {
x2 = b0x;
y2 = b0y;
} else {
x2 = b1x;
y2 = b1y;
}
} else {
// ray travels to the left and intersects xmin
b0x = xmin;
b0y = s*xmin+t;
if (y0 < y1) {
// ray travels up and intersects ymax
b1y = ymax;
} else {
// ray travels down and intersects ymin
b1y = ymin;
}
b1x = (b1y-t)/s;
if (b0x > b1x) {
x2 = b0x;
y2 = b0y;
} else {
x2 = b1x;
y2 = b1y;
}
}
return true;
}
bool GenGeomAlgs::nearlyEqual(double x, double y)
{
double max1xy = std::max(fabs(x) ,fabs(y));
max1xy = std::max(max1xy, 1.0);
// have added in an extra factor of 8 in the following. Not needed,
// but want to add in a margin of safety
return fabs(x-y) <= 8*std::numeric_limits<double>::epsilon()*max1xy;
}