-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathReprojectingLatLongtoUTM.Rmd
131 lines (99 loc) · 4.71 KB
/
ReprojectingLatLongtoUTM.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
---
title: "Reprojecting a raster from Lat/long to UTM"
author: "Eliakim Hamunyela and Jan Verbesselt"
date: "`r format(Sys.time(), '%d %B, %Y')`"
output:
html_document:
toc: true
theme: united
toc_depth: 4
number_sections: true
---
# Introduction
OSGEO Python approach - to clip a raster (lat/long) into UTM zones and reproject individual clipped raster to their UTM zone.
Once they are all in their UTM zone, they can be joined again (mozaic).
# Python
## Check your Python version
```{r, engine='python'}
import sys ## checking the Python version
print sys.version #parentheses necessary in python 3.
```
## Read in shape file and convert ESRI projection Wkt format to PROJ.4
Doing the same via `Python`:
```{r, engine='python'}
import os
from osgeo import ogr
import osgeo.osr
srs = osgeo.osr.SpatialReference()
Llutm = r"TiffRastersAndVectorShapeData/VectorData/psUTMGridZonesWorld.shp"
## open shape file
driver = ogr.GetDriverByName('ESRI Shapefile')
dataSource = driver.Open(Llutm, 0) # 0 means read-only. 1 means writeable.
# Check to see if shapefile is found.
if dataSource is None:
print 'Could not open %s' % (Llutm)
else:
print 'Opened %s' % (Llutm)
layer = dataSource.GetLayer()
featureCount = layer.GetFeatureCount()
print "Number of features in %s: %d" % (os.path.basename(Llutm),featureCount)
## extract the info of the UTMZonePro Layer and feed into the section below
dataSource = ogr.Open(Llutm)
daLayer = dataSource.GetLayer(0)
layerDefinition = daLayer.GetLayerDefn()
for i in range(layerDefinition.GetFieldCount()):
print layerDefinition.GetFieldDefn(i).GetName()
print "print a specific layer"
print layerDefinition.GetFieldDefn(6).GetName()
## Feature
feature = daLayer.GetFeature(0)
id = feature.GetField('UTMZonePro')
print("print id")
print(id)
#import from wkt
srs.ImportFromWkt(id)
#create proj4
out = srs.ExportToProj4()
print(out)
```
**Here the PROJ.4 file is not complete**
## Reprojecting - In progress
```{r, engine='python'}
import osgeo.osr
srs = osgeo.osr.SpatialReference()
#create coordinate string.
#The wkt from our example is not complete, so we use this wkt from here: http://www.gdal.org/osr_tutorial.html
test = 'PROJCS["UTM 18 (WGS84) in northern hemisphere.",GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563,AUTHORITY["EPSG",7031]],TOWGS84[0,0,0,0,0,0,0],AUTHORITY["EPSG",6327]],PRIMEM["Greenwich",0,AUTHORITY["EPSG",8902]],UNIT["DMSH",0.0174532925199433,AUTHORITY["EPSG",9109]],AXIS["Lat",NORTH],AXIS["Long",EAST],AUTHORITY["EPSG",4327]],PROJECTION["Transverse_Mercator"],PARAMETER["latitude_of_origin",0],PARAMETER["central_meridian",-84],PARAMETER["scale_factor",0.9996],PARAMETER["false_easting",500000],PARAMETER["false_northing",0]]'
print(test)
#import from wkt
srs.ImportFromWkt (test)
#create proj4
out = srs.ExportToProj4()
print(out)
```
# R
Reading in the shape file using `R`
```{r, eval=FALSE}
require(rgdal)
dsn <- "TiffRastersAndVectorShapeData/VectorData/"
ogrInfo(dsn, "psUTMGridZonesWorld")
# read in shapefiles
latlongutmgrid <- readOGR(dsn, "psUTMGridZonesWorld")
# note that readOGR will read the .prj file if it exists
print(proj4string(latlongutmgrid))
# info about UTM zones
latlongutmgrid$UTMZonePro[1]
out <- latlongutmgrid$UTMZonePro[1]
## export data for this zone and then read it in via Python
write.table(out, "TiffRastersAndVectorShapeData/VectorData/ZoneInfo.csv",
col.names = FALSE, row.names = FALSE, quote = FALSE)
```
# Summary - What have we learned
# Acknowledgements and more info
- http://www.gdal.org/osr_tutorial.html
- http://spatialnotes.blogspot.nl/2010/11/converting-wkt-projection-info-to-proj4.html
- https://pcjericks.github.io/py-gdalogr-cookbook/
<!---
### comments not processed by the kml file
I've had many occasions where I've had WKT-style projection text (e.g., the contents of the *.prj files that normally accompany ESRI Shapefiles, or the srtext field in the spatial_ref_sys table in PostGIS), and I needed to get that to an equivalent Proj4-compatible projection string (and vice versa). I've known for some time there had to be an automated way to do this...as the GDAL/OGR libraries have been doing this internally for some time. I ran into the issue again today, so I decided to poke around a bit, and found the API functions that are available to do this...I wrote my first ever Python scripts that use the GDAL/OGR python bindings (specifically, OSR). These scripts simply convert WKT projection text to Proj4 (wkt2proj.py) and back (proj2wkt.py). Maybe there are some better examples elsewhere...but I didn't quite find what I was looking for. Since my work is mostly in PHP right now, I'd love to see the GDAL/OGR PHP bindings maintained someday, but this will do for now:
-->