diff --git a/src/gstools/covmodel/fit.py b/src/gstools/covmodel/fit.py index b420be70..8b19f497 100755 --- a/src/gstools/covmodel/fit.py +++ b/src/gstools/covmodel/fit.py @@ -214,6 +214,7 @@ def fit_variogram( def _pre_para(model, para_select, sill, anis): """Preprocess selected parameters.""" var_last = False + var_tmp = 0.0 # init value for par in para_select: if par not in model.arg_bounds: raise ValueError(f"fit: unknown parameter in selection: {par}") @@ -464,6 +465,7 @@ def _post_fitting(model, para, popt, anis, is_dir_vario): fit_para = {} para_skip = 0 opt_skip = 0 + var_tmp = 0.0 # init value for par in DEFAULT_PARA: if para[par]: if par == "var": # set variance last diff --git a/src/gstools/field/plot.py b/src/gstools/field/plot.py index ab28c974..346ef602 100644 --- a/src/gstools/field/plot.py +++ b/src/gstools/field/plot.py @@ -291,6 +291,7 @@ def update_plane(label): s.vline.set_data(2 * [s.valinit], [-0.1, 1.1]) s.reset() im.set_extent(ax_extents[p]) + asp = 1.0 # init value if aspect == "quad": asp = ax_rngs[planes[p][0]] / ax_rngs[planes[p][1]] if aspect is not None: diff --git a/src/gstools/krige/base.py b/src/gstools/krige/base.py index 49a4f62f..78aa2a9f 100755 --- a/src/gstools/krige/base.py +++ b/src/gstools/krige/base.py @@ -337,6 +337,7 @@ def _get_krige_vecs( # determine the chunk size chunk_size = len(pos[0]) if chunk_slice[1] is None else chunk_slice[1] chunk_size -= chunk_slice[0] + chunk_pos = None # init value res = np.empty((self.krige_size, chunk_size), dtype=np.double) if only_mean: # set points to limit of the covariance to only get the mean diff --git a/src/gstools/transform/field.py b/src/gstools/transform/field.py index 4a281564..a123e798 100644 --- a/src/gstools/transform/field.py +++ b/src/gstools/transform/field.py @@ -262,8 +262,7 @@ def binary( """ if not process and divide is None: _check_for_default_normal(fld) - if divide is None: - mean = 0.0 if process and not keep_mean else fld.mean + mean = 0.0 if process and not keep_mean else fld.mean divide = mean if divide is None else divide upper = mean + np.sqrt(fld.model.sill) if upper is None else upper lower = mean - np.sqrt(fld.model.sill) if lower is None else lower