Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Couldnt draw AOI #4

Open
Shahryar3079 opened this issue Apr 21, 2024 · 5 comments
Open

Couldnt draw AOI #4

Shahryar3079 opened this issue Apr 21, 2024 · 5 comments

Comments

@Shahryar3079
Copy link

Hello,

I am using this software for DIC and when I start to draw AOI it crashes and following error appears in command prompt.

File "C:\Users\Shahryar\py2DIC-master\sources\DIC_UI.py", line 96, in paint
painter.drawEllipse(self.x-self.radius, self.y-self.radius, 2self.radius, 2self.radius)
TypeError: arguments did not match any overloaded call:
drawEllipse(self, r: QRectF): argument 1 has unexpected type 'float'
drawEllipse(self, r: QRect): argument 1 has unexpected type 'float'
drawEllipse(self, x: int, y: int, w: int, h: int): argument 1 has unexpected type 'float'
drawEllipse(self, center: Union[QPointF, QPoint], rx: float, ry: float): argument 1 has unexpected type 'float'
drawEllipse(self, center: QPoint, rx: int, ry: int): argument 1 has unexpected type 'float'

Please let me know why its happening.

@Shahryar3079
Copy link
Author

Also there are many issues with plotting. Should we modify the whole code according to new python libraries?
image

@Shahryar3079
Copy link
Author

image

@Shahryar3079
Copy link
Author

import cv2
import numpy as np
from matplotlib import pyplot as plt
import glob
import matplotlib.cm as cm
import matplotlib.colors as mcolors
import matplotlib.colorbar as mcolorbar
from scipy import signal as sg
import os
from PyQt5.QtCore import pyqtRemoveInputHook
import time
import pdb

def template_match(img_master, img_slave, method='cv2.TM_CCOEFF_NORMED', mlx=1, mly=1, show=True):
# Apply image oversampling
img_master = cv2.resize(img_master, None, fx=mlx, fy=mly, interpolation=cv2.INTER_CUBIC)
img_slave = cv2.resize(img_slave, None, fx=mlx, fy=mly, interpolation=cv2.INTER_CUBIC)

res = cv2.matchTemplate(img_slave, img_master, eval(method))

w, h = img_master.shape[::-1]
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)

# Control if the method is TM_SQDIFF or TM_SQDIFF_NORMED, take minimum value
if method in [cv2.TM_SQDIFF, cv2.TM_SQDIFF_NORMED]:
    top_left = min_loc
else:
    top_left = max_loc
bottom_right = (top_left[0] + w, top_left[1] + h)

# Retrieve center coordinates
px = (top_left[0] + bottom_right[0]) / (2.0 * mlx)
py = (top_left[1] + bottom_right[1]) / (2.0 * mly)

# Visualization of matching results
if show:
    # Scale images for visualization
    img_master_scaled = cv2.convertScaleAbs(img_master, alpha=(255.0 / 500))
    img_slave_scaled = cv2.convertScaleAbs(img_slave, alpha=(255.0 / 500))
    cv2.rectangle(img_slave_scaled, top_left, bottom_right, 255, int(2 * mlx))
    plt.figure(figsize=(20, 10))
    plt.subplot(131), plt.imshow(res, cmap='gray')
    plt.title('Matching Result'), plt.xticks([]), plt.yticks([])
    plt.subplot(132), plt.imshow(img_master_scaled, cmap='gray')
    plt.title('Detected Point'), plt.xticks([]), plt.yticks([])
    plt.subplot(133), plt.imshow(img_slave_scaled, cmap='gray')
    plt.suptitle(method)
    plt.show()

return px, py, max_val

def template_match_cv_OCL_transp_API(img_master, img_slave, method='cv2.TM_CCOEFF_NORMED', mlx=1, mly=1, show=True):
# width and height of resampled images
w = img_master.shape[1] * mlx
h = img_master.shape[0] * mly

# Convert the input images in UMat images (GPU) thanks to Open Computing Language (OpenCL)
img_slave = cv2.UMat(img_slave)
img_master = cv2.UMat(img_master)

# Apply image oversampling
img_master = cv2.resize(img_master, None, fx=mlx, fy=mly, interpolation=cv2.INTER_CUBIC)
img_slave = cv2.resize(img_slave, None, fx=mlx, fy=mly, interpolation=cv2.INTER_CUBIC)

res = cv2.matchTemplate(img_slave, img_master, eval(method))

min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)

# Control if the method is TM_SQDIFF or TM_SQDIFF_NORMED, take minimum value
if method in [cv2.TM_SQDIFF, cv2.TM_SQDIFF_NORMED]:
    top_left = min_loc
else:
    top_left = max_loc
bottom_right = (top_left[0] + w, top_left[1] + h)

# Retrieve center coordinates
px = (top_left[0] + bottom_right[0]) / (2.0 * mlx)
py = (top_left[1] + bottom_right[1]) / (2.0 * mly)

# Visualization of matching results
if show:
    # Scale images for visualization
    img_master_scaled = cv2.convertScaleAbs(img_master, alpha=(255.0 / 500))
    img_slave_scaled = cv2.convertScaleAbs(img_slave, alpha=(255.0 / 500))
    cv2.rectangle(img_slave_scaled, top_left, bottom_right, 255, int(2 * mlx))

    # convert back from Umat (GPU) to numpy array for matplotlib
    img_master_scaled = cv2.UMat.get(img_master_scaled)
    img_slave_scaled = cv2.UMat.get(img_slave_scaled)

    plt.figure(figsize=(20, 10))
    plt.subplot(131), plt.imshow(res, cmap='gray')
    plt.title('Matching Result'), plt.xticks([]), plt.yticks([])
    plt.subplot(132), plt.imshow(img_master_scaled, cmap='gray')
    plt.title('Detected Point'), plt.xticks([]), plt.yticks([])
    plt.subplot(133), plt.imshow(img_slave_scaled, cmap='gray')
    plt.suptitle(method)
    plt.show()

return px, py, max_val

def DIC(images_absolute_path, format, vel, dim_pixel, frame_rate, start_index, levels, image_time_sampling, temp_dim, b, d, recty1, recty2, rectx1, rectx2, c=0):
start_time = time.time()
ml_x = 10
ml_y = 10

# Threshold values set for the Plate Hole DIC Challenge image collection
dx_thresh_inf = -1.35
dx_thresh_sup = 0
dy_thresh_inf = -12.4
dy_thresh_sup = -4.5

# Checking that the template dimension is odd
if int(temp_dim) % 2 == 0:
    temp_dim += 1

plt.close("all")
plt.switch_backend("Qt5Agg")

# Find the last folder, which we assume being the name of the test
test_name = os.path.basename(os.path.normpath(images_absolute_path))

initial_start_index = start_index
print('dentro DIC', recty1, recty2, rectx1, rectx2, images_absolute_path)

print('Backend: {}'.format(plt.get_backend()))
print('Test:', test_name)
plt.rc('text', usetex=False)

msg = test_name + "\n"
msg += '-----------\n'
msg += "Imposed deformation velocity\n"
msg += str(vel) + " mm/min\n"

# Convert velocity units from mm/min to mm/s
vel = vel / 60

format = '.' + format

img_names = sorted(glob.glob(os.path.join(images_absolute_path, "*" + format)))
img1 = cv2.imread(img_names[0], cv2.IMREAD_GRAYSCALE)

if recty1 is not None and recty2 is not None and rectx1 is not None and rectx2 is not None:
    # otherwise the AOI is all the image
    print('p2', rectx2, recty2)
    print('p1', rectx1, recty1)
    Dim_y = recty2 - recty1
    Dim_x = rectx2 - rectx1
else:
    Dim_x = np.shape(img1)[1]  # width 
    Dim_y = np.shape(img1)[0]  # height 

if np.shape(img1)[1] > np.shape(img1)[0]:
    # In this case the images have a horizontal layout
    # The x axis corresponds to the image columns
    # The y axis corresponds to the image rows
    boh = d
    d = b
    b = boh
    boh = ml_x
    ml_x = ml_y
    ml_y = boh

    dy_thresh_inf = -1.35
    dy_thresh_sup = 0        
    dx_thresh_inf = 4.5  # np.min(dx)#- 1.35
    dx_thresh_sup = 12.4  # np.max(dx)#0

    print("Dim x:", Dim_x)
    print("Dim y:", Dim_y)

    # Dimensions of the matching grid
    h = int(Dim_y / (temp_dim + 2 * b + c))  # rows
    w = int(Dim_x / (temp_dim + 2 * d + c))  # columns
    print('h grid rows', h)
    print('w grid cols', w)

    # Array where to store the results
    # we cumulate the displacements computed for each level
    results = np.zeros((h * w, 6))
    results_mm = np.zeros((h * w, 6))
    for l in range(levels):

            stop_index = start_index + image_time_sampling
            print(stop_index, start_index, image_time_sampling, initial_start_index)

            msg = ''
            print("level", l + 1)
            msg = msg + '-----------'
            msg = msg + "\nAnalysed images"
            msg = msg + "\n1: " + os.path.basename(str(img_names[start_index]))
            msg = msg + "\n2: " + os.path.basename(str(img_names[stop_index]))
            print(msg)

            delta_index = stop_index - start_index
            tempo_passato = delta_index / frame_rate  # seconds
            spost_atteso_mm = vel * tempo_passato   # mm
            spost_atteso_pixel = round(spost_atteso_mm / dim_pixel, 0)  # pixel

            print('-----------')
            print("Expected displacement")
            print(spost_atteso_mm, 'mm ', spost_atteso_pixel, ' pixel')   

            msg = msg + '\n-----------\n'
            msg = msg + "Expected displacement\n"
            msg = msg + str(spost_atteso_mm) + ' mm ' + str(spost_atteso_pixel) + ' pixel\n' 

            img1 = cv2.imread(img_names[start_index], cv2.IMREAD_GRAYSCALE)
            img2 = cv2.imread(img_names[stop_index], cv2.IMREAD_GRAYSCALE)

            if recty1 is None:
                crop_img1 = img1
                crop_img2 = img2
            else:
                crop_img1 = img1[recty1:recty2, rectx1:rectx2]
                crop_img2 = img2[recty1:recty2, rectx1:rectx2]

            print('-----------')
            print("Camera resolution")
            print(Dim_x, "x", Dim_y)
            print('-----------')
            print("Camera frame rate")
            print(frame_rate, "fps (one shot every", 1 / frame_rate, "seconds)")

            msg = msg + '\n-----------\n'
            msg = msg + "Camera resolution\n"
            msg = msg + str(Dim_x) + "x" + str(Dim_y)
            msg = msg + '\n-----------\n'
            msg = msg + "Camera frame rate\n"
            msg = msg + str(frame_rate) + " fps (one shot every " + str(1 / frame_rate) + " seconds)"

            ########### TEMPLATE PARAMETERS ################
            # matchZoneWidth should be greater than the maximum displacement expected
            k = 0

            img1r = crop_img1.copy()
            img2r = crop_img2.copy()
            for j in range(h):  # loop on rows (Y)
                for i in range(w):  # loop on columns (X)

                    Delta_X = i * (c + 2 * d + temp_dim)
                    Delta_Y = j * (c + 2 * b + temp_dim)

                    TP_temp_x = Delta_X + c + d + (temp_dim - 1) / 2.0  # x start
                    TP_temp_y = Delta_Y + c + b + (temp_dim - 1) / 2.0  # y start

                    start_x_template_slice = c + d + Delta_X
                    stop_x_template_slice = c + d + Delta_X + temp_dim
                    start_y_template_slice = c + b + Delta_Y
                    stop_y_template_slice = c + b + Delta_Y + temp_dim

                    shape_template = np.shape(img1r[start_y_template_slice:stop_y_template_slice, start_x_template_slice:stop_x_template_slice])

                    # checking the template dimensions
                    assert np.allclose(shape_template[0], temp_dim)
                    assert np.allclose(shape_template[1], temp_dim)
                    assert np.allclose(stop_y_template_slice - start_y_template_slice, temp_dim)
                    assert np.allclose(stop_x_template_slice - start_x_template_slice, temp_dim)
                    assert np.allclose(TP_temp_x, (start_x_template_slice + stop_x_template_slice) // 2.0)
                    assert np.allclose(TP_temp_y, (start_y_template_slice + stop_y_template_slice) // 2.0)

                    start_x_search_slice = c + Delta_X
                    stop_x_search_slice = c + Delta_X + 2 * d + temp_dim
                    start_y_search_slice = c + Delta_Y
                    stop_y_search_slice = c + Delta_Y + 2 * b + temp_dim

                    shape_search = np.shape(img2r[start_y_search_slice:stop_y_search_slice, start_x_search_slice:stop_x_search_slice])
                    # checking the search area dimensions
                    assert np.allclose((shape_search[0] - temp_dim) / 2.0, b)
                    assert np.allclose((shape_search[1] - temp_dim) / 2.0, d)
                    assert np.allclose(TP_temp_x, (start_x_search_slice + stop_x_search_slice) // 2.0)
                    assert np.allclose(TP_temp_y, (start_y_search_slice + stop_y_search_slice) // 2.0)

                    temp = img1r[start_y_template_slice:stop_y_template_slice, start_x_template_slice:stop_x_template_slice]
                    search_area = img2r[start_y_search_slice:stop_y_search_slice, start_x_search_slice:stop_x_search_slice]

                    indx, indy, maxcc = template_match(temp.astype('uint8'), search_area.astype('uint8'), mlx=ml_x, mly=ml_y, show=False)
                    # indx, indy, maxcc = template_match_cv_OCL_transp_API(temp, search_area, mlx=ml_x, mly=ml_y, show=False)

                    TP_search_x = Delta_X + c + indx - 0.5  # end point x 
                    TP_search_y = Delta_Y + c + indy - 0.5  # end point y 

                    # Convert the pixel results into millimeters 
                    results_mm[k, 0] = TP_temp_x  # start point x [pixel]
                    results_mm[k, 1] = TP_temp_y  # start point y [pixel]
                    results_mm[k, 2] = TP_search_x * dim_pixel - TP_temp_x * dim_pixel + results_mm[k, 2]  # dx [mm]
                    results_mm[k, 3] = TP_search_y * dim_pixel - TP_temp_y * dim_pixel + results_mm[k, 3]  # dy [mm]
                    results_mm[k, 4] = np.sqrt((results_mm[k, 3]) ** 2 + (results_mm[k, 2]) ** 2)  # displ. modulo [mm]
                    results_mm[k, 5] = maxcc + results_mm[k, 5]

                    k = k + 1
            start_index = stop_index

            dx = results_mm[:, 2].copy()
            dy = results_mm[:, 3].copy()

            dx.shape = (h, w)  # the computed displacements have the dimensions of the matching grid
            dy.shape = (h, w)

            # Derivative kernel
            operatore = np.array([-1., 0, 1.])
            print('-----------')
            print("Used derivative kernel")
            print("dx ", operatore)
            print("dy ", operatore.T)
            print('-----------')

            msg = msg + '-----------\n'
            msg = msg + "Used derivative kernel\n"
            msg = msg + "dx " + str(operatore) + "\n"
            msg = msg + "dy " + str(operatore.T)
            msg = msg + '\n-----------\n'

            # Convolution for derivative computation
            # Divide by the grid step
            # The grid (dx-dy) comes from a bigger grid 
            # http://docs.scipy.org/doc/scipy-0.16.1/reference/generated/scipy.signal.convolve.html
            # Gx = sg.convolve(dx, -operatore/[(2*(2*d+temp_dim+c))*dim_pixel],  mode='same')
            # Gy = sg.convolve(dy, -operatore.T/[(2*(2*b+temp_dim+c))*dim_pixel], mode='same')
            Gx = sg.convolve(dx, -operatore / (2 * (2 * d + temp_dim + c) * dim_pixel), mode='same')
            Gy = sg.convolve(dy, -operatore.T / (2 * (2 * b + temp_dim + c) * dim_pixel), mode='same')  # Multiply by the pixel dimensions to have a millimeters value

            # Printing the files for the single level, before adding the NaNs for visualization purposes
            np.savetxt("OutputPlots/" + test_name + "_results_mm_dx_" + str(initial_start_index) + "_" + str(stop_index) + ".txt", dx, fmt='%.5f')
            np.savetxt("OutputPlots/" + test_name + "_results_mm_dy_" + str(initial_start_index) + "_" + str(stop_index) + ".txt", dy, fmt='%.5f')
            np.savetxt("OutputPlots/" + test_name + "_results_mm_Gy_" + str(initial_start_index) + "_" + str(stop_index) + ".txt", Gy, fmt='%.7f')
            np.savetxt("OutputPlots/" + test_name + "_results_mm_Gx_" + str(initial_start_index) + "_" + str(stop_index) + ".txt", Gx, fmt='%.7f')
            # PLOTS 
            # threshold values set for the Plate Hole DIC Challenge image collection
            soglia_inf_y = dy_thresh_inf  # np.min(dy)#-12.4
            soglia_sup_mm_y = dy_thresh_sup  # np.max(dy)#- 4.5#np.inf#levels*spost_atteso_pixel*dim_pixel*1.1
            soglia_inf_x = dx_thresh_inf  # np.min(dx)#- 1.35
            soglia_sup_mm_x = dx_thresh_sup  # np.max(dx)#0
            soglia_inf_Gx = -4 / 100.0
            soglia_sup_Gx = 4.5 / 100.0
            soglia_inf_Gy = -4 / 100.0
            soglia_sup_Gy = 4 / 100.0
            indici_inf = np.where(dy < soglia_inf_y)  # Consider only positive dy
            ix = indici_inf[1]  # x index
            iy = indici_inf[0]  # y index
            dy[iy, ix] = np.nan

            indici_sup = np.where(dy > soglia_sup_mm_y)  # Consider only positive dy
            ix = indici_sup[1]  # x index
            iy = indici_sup[0]  # y index
            dy[iy, ix] = np.nan

            indici_inf = np.where(dx < soglia_inf_x)  # Consider only positive dy
            ix = indici_inf[1]  # x index
            iy = indici_inf[0]  # y index
            dx[iy, ix] = np.nan

            indici_sup = np.where(dx > soglia_sup_mm_x)  # Consider only positive dy
            ix = indici_sup[1]  # x index
            iy = indici_sup[0]  # y index
            dx[iy, ix] = np.nan

            fig = plt.figure("Displacements dx between img " + str(initial_start_index) + " and img " + str(stop_index))
            plt.title("$Horizontal\;displacements: u$")
            plt.gca().set_aspect('equal', adjustable='box')
            plt.imshow(dx, cmap=cm.jet, norm=mcolors.Normalize(vmin=soglia_inf_x, vmax=soglia_sup_mm_x), interpolation='None')
            cb = plt.colorbar()
            cb.set_clim(soglia_inf_x, soglia_sup_mm_x)
            cb.set_label('$mm$')
            plt.savefig("OutputPlots/" + test_name + "_displacements_dx_img_" + str(initial_start_index) + "_img_" + str(stop_index) + ".png")

            fig = plt.figure("Displacements dy between img " + str(initial_start_index) + " and img " + str(stop_index))
            plt.title("$Vertical\;displacements: v$")
            plt.gca().set_aspect('equal', adjustable='box')
            plt.imshow(dy, cmap=cm.jet, norm=mcolors.Normalize(vmin=soglia_inf_y, vmax=soglia_sup_mm_y), interpolation='None')
            cb2 = plt.colorbar()
            cb2.set_clim(soglia_inf_y, soglia_sup_mm_y)
            cb2.set_label('$mm$')
            plt.savefig("OutputPlots/" + test_name + "_displacements_img_" + str(initial_start_index) + "_img_" + str(stop_index) + ".png")
            plt.savefig("GIF/" + test_name + "_displacements_dy_img_" + str(initial_start_index) + "_img_" + str(stop_index) + ".png")
            # Remove the absolute value of strains greater than 4%
            indici_sup_def = np.where(Gy > soglia_sup_Gy)
            ix = indici_sup_def[1]  # x index
            iy = indici_sup_def[0]  # y index
            Gy[iy, ix] = np.nan
            indici_inf_def = np.where(Gy < soglia_inf_Gy)
            ix = indici_inf_def[1]  # x index
            iy = indici_inf_def[0]  # y index
            Gy[iy, ix] = np.nan

            # Remove the absolute value of strains greater than 4%
            indici_sup_def = np.where(Gx > soglia_sup_Gx)
            ix = indici_sup_def[1]  # x index
            iy = indici_sup_def[0]  # y index
            Gx[iy, ix] = np.nan
            indici_inf_def = np.where(Gx < soglia_inf_Gx)
            ix = indici_inf_def[1]  # x index
            iy = indici_inf_def[0]  # y index
            Gx[iy, ix] = np.nan

            fig = plt.figure("Gx between img " + str(initial_start_index) + " and img " + str(stop_index))
            plt.title("{\partial u \over \partial x}")
            plt.imshow(Gx, cmap=cm.jet, interpolation='None')
            plt.colorbar()

            fig = plt.figure("Gy between img " + str(initial_start_index) + " and img " + str(stop_index))
            plt.title("{\partial v \over \partial y}")
            plt.imshow(Gy, cmap=cm.jet, interpolation='None')
            plt.colorbar()
            plt.show()
            print(np.max(results_mm[:, 3]), np.min(results_mm[:, 3]))

            # Remove strains whose absolute value is greater than soglia_sup and lower than soglia_inf
            # limite_inf = np.where(results_mm2[:,3]<soglia_inf)[0]
            # results_mm2 = np.delete(results_mm2, limite_inf, axis=0)
            # limite_sup = np.where(results_mm2[:,3]>soglia_sup_mm)[0]
            # results_mm2 = np.delete(results_mm2, limite_sup, axis=0)

            print(np.nanmax(results_mm[:, 3]), np.nanmin(results_mm[:, 3]), np.nanmedian(results_mm[:, 3]), np.nanmean(results_mm[:, 3]))

            # http://stackoverflow.com/questions/11970186/matplotlib-quiver-and-imshow-superimposed-how-can-i-set-two-colorbars
            # http://stackoverflow.com/questions/23964856/plotting-streamlines-with-matplotlib-python
            nz = mcolors.Normalize()
            nz.autoscale(results_mm[:, 4])
            fig = plt.figure("img " + str(initial_start_index) + " - img " + str(stop_index))
            ax = fig.add_subplot(111)
            plt.imshow(crop_img1, cmap=plt.cm.gray, origin='upper')
            plt.title("img " + str(initial_start_index) + " - img " + str(stop_index))
            ax.set_prop_cycle(color=['red', 'black', 'yellow'])
            # Same scale on the x and y axes
            plt.gca().set_aspect('equal', adjustable='box')

            plt.ylabel('pixels')
            plt.xlabel('pixels')

            # Plot quiver
            plt.quiver(results_mm[:, 0],  # start x  [pixel]
                        results_mm[:, 1],  # start y  [pixel]
                        results_mm[:, 2] / results_mm[:, 4],  # dx / |displ| [mm/mm]
                        results_mm[:, 3] / results_mm[:, 4],  # dy / |displ| [mm/mm]
                        angles='xy',
                        scale=30,
                        color=cm.jet(nz(results_mm[:, 4])),
                        edgecolor='k',  # edge color of the quivers
                        linewidth=.2)
            # Colorbar
            cax, _ = mcolorbar.make_axes(plt.gca())

            soglia_sup_prova_mm = np.nanmax(results_mm[:, 4])
            soglia_inf_prova_mm = np.nanmin(results_mm[:, 4])

            # vmin and vmax should be symmetric? ex: - 6 ,6
            cb = mcolorbar.ColorbarBase(cax, cmap=cm.jet, norm=mcolors.Normalize(vmin=soglia_inf_prova_mm, vmax=soglia_sup_prova_mm))
            cb.set_clim(soglia_inf_prova_mm, soglia_sup_prova_mm)

            # cb = mcolorbar.ColorbarBase(cax, cmap=cm.jet, norm=nz)
            # cb = mcolorbar.ColorbarBase(cax, cmap=cm.jet)#, norm=mcolors.Normalize(vmin=soglia_inf, vmax=soglia_sup_mm))
            # cb.set_clim(soglia_inf, soglia_sup_mm)# it doesn't work
            cb.set_label('mm')
            plt.savefig("GIFfrec/" + test_name + "_freccette_img_" + str(initial_start_index) + "_img_" + str(stop_index) + ".png")
            mng = plt.get_current_fig_manager()
            # mng.window.showMaximized()
########### SECTION PLOT ########### 
plt.figure("Sample central section")
plt.plot(dy[:, np.shape(dy)[1]//2])  # Ensure integer division in Python 3
plt.ylabel('y displacements (mm)')
plt.xlabel('y axis on the grid nodes (mm)')
plt.savefig("OutputPlots/" + test_name + "_sezione_img_" + str(initial_start_index) + "_img_" + str(stop_index) + ".png")
print("py2DIC execution time: %s s" % (time.time() - start_time))
plt.show()

return msg

def gif(path1, filename):
imgs = []
img_names = glob.glob(path1 + "/*.png")
img_names.sort()
for img_name in img_names:
img = cv2.imread(img_name)
imgs.append(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))

writeGif(path1 + filename, imgs, duration=1)

ciao = 5

@Shahryar3079
Copy link
Author

import sys
import os
from PyQt5.QtCore import Qt
from PyQt5.QtGui import *
from PyQt5.QtWidgets import *
import DIC_for_GUI as DIC_roby
from matplotlib import pyplot as plt
import pdb
import numpy as np
path = os.path.dirname(os.path.abspath(file))+'/'

results_directory = 'OutputPlots'
if not os.path.exists(os.path.join(path, results_directory)):
os.makedirs(os.path.join(path, results_directory))

results_directory = 'GIF'
if not os.path.exists(os.path.join(path, results_directory)):
os.makedirs(os.path.join(path, results_directory))

results_directory = 'GIFfrec'
if not os.path.exists(os.path.join(path, results_directory)):
os.makedirs(os.path.join(path, results_directory))

rectangley1 = None
rectangley2 = None
rectanglex1 = None
rectanglex2 = None
absolute_path_of_images = None

class ImageDrawPanel(QGraphicsPixmapItem):
def init(self, window_width=None, window_height=None, pixmap=None, parent=None, scene=None, width_scale_ratio=1, height_scale_ratio=1):
super(ImageDrawPanel, self).init()
self.cont = 0
self.x, self.y = -1, -1
self.radius = 10
self.pen = QPen(Qt.SolidLine)
self.pen.setColor(Qt.black)
self.pen.setWidth(2)
self.brush = QBrush(Qt.yellow)
self.width_scale_ratio = width_scale_ratio
self.height_scale_ratio = height_scale_ratio
self.rect = np.zeros((2, 2))
self.window_width = window_width
self.window_height = window_height

def paint(self, painter, option, widget=None):
    global rectangley1
    global rectangley2
    global rectanglex1
    global rectanglex2
    rectangley1 = None
    rectangley2 = None
    rectanglex1 = None
    rectanglex2 = None
    painter.drawPixmap(0, 0, self.pixmap())
    painter.setPen(self.pen)
    painter.setBrush(self.brush)

    if self.x >= 0 and self.y >= 0 and self.x < self.window_width and self.y < self.window_height:
        painter.drawEllipse(int(self.x - self.radius), int(self.y - self.radius), int(2 * self.radius), int(2 * self.radius))

        
        print(self.cont, self.x, self.y)
        self.rect[self.cont, 0] = self.x
        self.rect[self.cont, 1] = self.y
        self.x, self.y = -1, -1
        self.cont = self.cont + 1
    if self.cont == 2:
        print(self.rect)
        painter.drawRect(int(self.rect[0, 0]), int(self.rect[0, 1]), int(self.rect[1, 0] - self.rect[0, 0]), int(self.rect[1, 1] - self.rect[0, 1]))

      
        self.cont = 0

        rectangley1 = int(self.rect[0, 1] / self.height_scale_ratio)
        rectangley2 = int(self.rect[1, 1] / self.height_scale_ratio)
        rectanglex1 = int(self.rect[0, 0] / self.width_scale_ratio)
        rectanglex2 = int(self.rect[1, 0] / self.width_scale_ratio)

def mousePressEvent(self, event):
    self.x = event.pos().x()
    self.y = event.pos().y()
    self.update()

def mouseMoveEvent(self, event):
    self.x = event.pos().x()
    self.y = event.pos().y()
    self.update()

class Second(QMainWindow):
def init(self, parent=None):
super(Second, self).init(parent)

    pixmap = self.openImage()
    original_width = pixmap.width()
    original_height = pixmap.height()
    if pixmap.height() >= pixmap.width():
        window_width = 500
        window_height = 900
    else:
        window_width = 900
        window_height = 500

    print(window_width, window_height)
    self.scene = QGraphicsScene()
    self.scene.setSceneRect(0, 0, window_width, window_height)

    self.imagePanel = ImageDrawPanel(scene=self.scene, window_width=window_width, window_height=window_height)
    self.imagePanel.setPixmap(pixmap)
    self.scene.addItem(self.imagePanel)

    self.width_scale_ratio = float(window_width) / original_width
    self.height_scale_ratio = float(window_height) / original_height
    print('**** py2DIC by Geodesy and Geomatics Division ****')
    print('Image original width', original_width, '\nwidth ratio', self.width_scale_ratio)
    print('Image original height', original_height, '\nheight ratio', self.height_scale_ratio)

    pixmap = pixmap.scaled(window_width, window_height)
    self.imagePanel = ImageDrawPanel(scene=self.scene, window_width=window_width, window_height=window_height, width_scale_ratio=self.width_scale_ratio, height_scale_ratio=self.height_scale_ratio)
    self.imagePanel.setPixmap(pixmap)
    self.scene.addItem(self.imagePanel)

    self.view = QGraphicsView(self.scene)

    layout = QHBoxLayout()
    layout.addWidget(self.view)

    self.widget = QWidget()
    self.widget.setLayout(layout)

    self.setCentralWidget(self.widget)
    self.setWindowTitle("Draw the Area of Interest (AOI)")

def openImage(self):
    global absolute_path_of_images
    fname = QFileDialog.getOpenFileName(self, "Open image", ".", "Image Files (*.JPG *.png *TIF)")
    absolute_path_of_images = str(fname[0][:-1 * len(os.path.basename(str(fname[0])))])
    if len(absolute_path_of_images) == 0:
        return None
    if fname[0][-3:] == 'TIF' or fname[0][-3:] == 'tif':
        import cv2
        tiff_img = cv2.imread(fname[0], 1)
        imageQt = QImage(tiff_img, tiff_img.shape[1], tiff_img.shape[0], tiff_img.shape[1] * 3, QImage.Format_RGB888)
        pxmap = QPixmap(imageQt)
    else:
        pxmap = QPixmap(fname[0])
    return pxmap

class First(QDialog):

def __init__(self, parent=None):
    super(First, self).__init__(parent)

    global path
    self.setWindowTitle("py2DIC by AGG")

    self.scrollArea = QScrollArea(self)
    self.scrollArea.setWidgetResizable(True)
    self.scrollAreaWidgetContents = QWidget(self.scrollArea)
    self.scrollArea.setWidget(self.scrollAreaWidgetContents)

    self.verticalLayoutScroll = QVBoxLayout(self.scrollAreaWidgetContents)

    verticalLayout = QVBoxLayout(self)
    verticalLayout.addWidget(self.scrollArea)

    label_image = QLabel(self.scrollAreaWidgetContents)
    pixmap = QPixmap(path + '../logo_sapienza.jpg')

    if pixmap.width() == 0:
        path = path[:-1] + '/'
        pixmap = QPixmap(path + '../logo_sapienza.jpg')

    pixmap = pixmap.scaled(445, 90)
    label_image.setPixmap(pixmap)

    self.AOIbutton = QPushButton("Select AOI")
    self.l1 = QLabel(self.scrollAreaWidgetContents)
    self.l1.setText("Pixel dimension [mm]")
    self.le_pixel_dimension = QLineEdit(self.scrollAreaWidgetContents)
    self.le_pixel_dimension.setObjectName("DimPi")
    self.le_pixel_dimension.setText("1")

    self.l_frame_rate = QLabel(self.scrollAreaWidgetContents)
    self.l_frame_rate.setText("Camera acquisition time [s]")
    self.le_frame_rate = QLineEdit(self.scrollAreaWidgetContents)
    self.le_frame_rate.setObjectName("time")
    self.le_frame_rate.setText("5")

    self.labformat = QLabel(self.scrollAreaWidgetContents)
    self.labformat.setText("Image format (jpg, png...) - case sensitive -")
    self.lformat = QLineEdit(self.scrollAreaWidgetContents)
    self.lformat.setObjectName("Imformat")
    self.lformat.setText("JPG")

    self.l_prova = QLabel(self.scrollAreaWidgetContents)
    self.l_prova.setText("Test path")
    self.le_prova = QLineEdit(self.scrollAreaWidgetContents)
    self.le_prova.setObjectName("prova")
    self.le_prova.setText(absolute_path_of_images)

    self.l2 = QLabel(self.scrollAreaWidgetContents)
    self.l2.setText("Imposed deformation velocity [mm/m]")
    self.le2 = QLineEdit(self.scrollAreaWidgetContents)
    self.le2.setObjectName("vel def macchina")
    self.le2.setText("0.5")

    self.lsi = QLabel(self.scrollAreaWidgetContents)
    self.lsi.setText("Start index")
    self.lesi = QLineEdit(self.scrollAreaWidgetContents)
    self.lesi.setObjectName("start_index")
    self.lesi.setText("0")

    self.lstopi = QLabel(self.scrollAreaWidgetContents)
    self.lstopi.setText("Levels")
    self.lestopi = QLineEdit(self.scrollAreaWidgetContents)
    self.lestopi.setObjectName("levels")
    self.lestopi.setText("1")

    self.lsamp = QLabel(self.scrollAreaWidgetContents)
    self.lsamp.setText("Image time sampling")
    self.lesamp = QLineEdit(self.scrollAreaWidgetContents)
    self.lesamp.setObjectName("image_time_sampling")
    self.lesamp.setText("1")

    self.pb = QPushButton(self.scrollAreaWidgetContents)
    self.pb.setObjectName("Run")
    self.pb.setText("Run")

    self.l_tem_width = QLabel(self.scrollAreaWidgetContents)
    self.l_tem_width.setText("Template width [pixel]")
    self.le_tem_width = QLineEdit(self.scrollAreaWidgetContents)
    self.le_tem_width.setObjectName("templateWidth")
    self.le_tem_width.setText("9")

    self.l_b = QLabel(self.scrollAreaWidgetContents)
    self.l_b.setText("Edge y [pixel]")
    self.le_b = QLineEdit(self.scrollAreaWidgetContents)
    self.le_b.setObjectName("bordoy")
    self.le_b.setText("12")

    self.l_b1 = QLabel(self.scrollAreaWidgetContents)
    self.l_b1.setText("Edge x [pixel]")
    self.le_b1 = QLineEdit(self.scrollAreaWidgetContents)
    self.le_b1.setObjectName("bordox")
    self.le_b1.setText("2")

    self.display = QTextBrowser(self.scrollAreaWidgetContents)
    self.display.verticalScrollBar().setValue(0)
    self.display.verticalScrollBar().maximum()

    self.gif = QLabel(self.scrollAreaWidgetContents)
    self.gif.setText("GIF")
    self.rdbUno = QCheckBox("", self)
    self.rdbUno.setChecked(False)

    self.verticalLayoutScroll.addWidget(label_image)
    self.verticalLayoutScroll.addWidget(self.AOIbutton)
    self.verticalLayoutScroll.addWidget(self.l_prova)
    self.verticalLayoutScroll.addWidget(self.le_prova)
    self.verticalLayoutScroll.addWidget(self.labformat)
    self.verticalLayoutScroll.addWidget(self.lformat)
    self.verticalLayoutScroll.addWidget(self.l1)
    self.verticalLayoutScroll.addWidget(self.le_pixel_dimension)
    self.verticalLayoutScroll.addWidget(self.l2)
    self.verticalLayoutScroll.addWidget(self.le2)
    self.verticalLayoutScroll.addWidget(self.l_frame_rate)
    self.verticalLayoutScroll.addWidget(self.le_frame_rate)
    self.verticalLayoutScroll.addWidget(self.lsi)
    self.verticalLayoutScroll.addWidget(self.lesi)
    self.verticalLayoutScroll.addWidget(self.lstopi)
    self.verticalLayoutScroll.addWidget(self.lestopi)
    self.verticalLayoutScroll.addWidget(self.lsamp)
    self.verticalLayoutScroll.addWidget(self.lesamp)
    self.verticalLayoutScroll.addWidget(self.l_tem_width)
    self.verticalLayoutScroll.addWidget(self.le_tem_width)
    self.verticalLayoutScroll.addWidget(self.l_b)
    self.verticalLayoutScroll.addWidget(self.le_b)
    self.verticalLayoutScroll.addWidget(self.l_b1)
    self.verticalLayoutScroll.addWidget(self.le_b1)
    self.verticalLayoutScroll.addWidget(self.gif)
    self.verticalLayoutScroll.addWidget(self.rdbUno)
    self.verticalLayoutScroll.addWidget(self.pb)
    self.verticalLayoutScroll.addWidget(self.display)

    self.dialog = Second(self)
    print('images path', absolute_path_of_images)
    self.le_prova.setText(absolute_path_of_images)
    self.AOIbutton.clicked.connect(self.on_pushButton_clicked)

    self.pb.clicked.connect(self.button_click)

def on_pushButton_clicked(self):
    self.dialog.show()

def appExit(self):
    app.quit()

def button_click(self):
    try:
        global dim_pixel, rectangley1, rectangley2, rectanglex1, rectanglex2  # Accessing global variables

        self.dim_pixel = float(self.le_pixel_dimension.text())
        img_format = str(self.lformat.text())
        vel = float(self.le2.text())
        start_index = int(self.lesi.text())
        levels = int(self.lestopi.text())
        image_time_sampling = int(self.lesamp.text())
        templateWidth = int(self.le_tem_width.text())
        b = int(self.le_b.text())
        d = int(self.le_b1.text())
        frame_rate = 1.0 / float(self.le_frame_rate.text())
        prova = str(self.le_prova.text())

        print("Selected parameters:")
        print(self.dim_pixel, img_format, vel, start_index, levels, templateWidth, image_time_sampling, b, frame_rate)
        self.display.setText(self.display.toPlainText() +
                              "SELECTED PARAMETERS:" +
                              "\nTest name = " + prova +
                              "\nImage Format = " + img_format +
                              "\nPixel Dimension = " + str(self.dim_pixel) + ' mm'
                              '\nImposed deformation velocity = ' + str(vel) + ' mm/s' +
                              '\nCamera acquisition time = ' + str(1.0 / frame_rate) + ' s'
                              '\nStart index = ' + str(start_index) +
                              '\nLevels= ' + str(levels) +
                              '\nImage time sampling=' + str(image_time_sampling) +
                              '\nTemplate width = ' + str(templateWidth) + ' pixel' +
                              '\nSearch zone width = ' + str(b) + ' pixel\n\n')

    except:
        print("Error: input must be numbers")
        self.display.setText(self.display.toPlainText() + "Errore: gli input devono essere un numero\n")
        return False

    try:
        log_message = DIC_roby.DIC(prova, img_format, vel, self.dim_pixel, frame_rate, start_index, levels, image_time_sampling, templateWidth, b, d, rectangley1, rectangley2, rectanglex1, rectanglex2)

        if self.rdbUno.isChecked():
            DIC_roby.gif(os.path.join(path, "GIF"), "gif.GIF")
        else:
            print('no gif')

        self.display.setText(self.display.toPlainText() + "RESULTS\n" + log_message)
        plt.ioff()
        return True
    except:
        print("Error during cross correlation computation")
        self.display.setText(self.display.toPlainText() + "Error during cross correlation computation\n")
        print("Unexpected error:", sys.exc_info()[0])
        raise
        return False

if name == 'main':
app = QApplication(sys.argv)
main = First()
app.setActiveWindow(main)
main.show()
sys.exit(app.exec_())

@Shahryar3079
Copy link
Author

I changed the code according to python3 but I am getting following error now

image

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant