-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDynamic_Programming_6.java
189 lines (146 loc) · 5.25 KB
/
Dynamic_Programming_6.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import java.util.Arrays;
public class Dynamic_Programming_6 {
/*
Topics Covered:
* Matrix Chain Multiplication (Recursion)
* D.P. Matrix Chain Multiplication (Memoization)
* D.P. Matrix Chain Multiplication (Tabulation)
*
* Minimum Partitioning
*
* Minimum Array Jump
*/
public static void main(String args[]){
System.out.println("Matrix Chain Multiplication (Recursion): "+matrix_chain_multiplication(new int[]{1,2,3,4,3}, 1, 4));
int n = 5;
int dp[][] = new int[n][n];
for(int i[] : dp){
Arrays.fill(i, -1);
}
System.out.println("D.P. Matrix Chain Multiplication (Memoization): "+dp_matrix_chain_multiplication_memoization(new int[]{1,2,3,4,3}, 1, n-1, dp));
System.out.println("D.P. Matrix Chain Multiplication (Tabulation): "+dp_matrix_chain_multiplication_tabulation(new int[]{1,2,3,4,3}));
System.out.println("Minimum Partitioning: "+minimum_partitioning(new int[]{1,6,11,5}));
System.out.println("Minimum Array Jump: "+minimum_array_jump(new int[]{2,3,1,1,4}));
}
public static int matrix_chain_multiplication(int arr[], int i, int j){
if(i == j){
return 0;
}
int min_cost = Integer.MAX_VALUE;
for(int k=i; k<=j-1; k++){
int cost1 = matrix_chain_multiplication(arr, i, k);
int cost2 = matrix_chain_multiplication(arr, k+1, j);
int selfcost = arr[i-1] * arr[k] * arr[j];
int total_ans = cost1 + cost2 + selfcost;
min_cost = Math.min(min_cost, total_ans);
}
return min_cost;
}
public static int dp_matrix_chain_multiplication_memoization(int arr[], int i, int j, int dp[][]){
if(i == j){
return dp[i][j] = 0;
}
if(dp[i][j] != -1){
return dp[i][j];
}
int min_cost = Integer.MAX_VALUE;
for(int k=i; k<=j-1; k++){
int cost1 = dp_matrix_chain_multiplication_memoization(arr, i, k, dp);
int cost2 = dp_matrix_chain_multiplication_memoization(arr, k+1, j, dp);
int selfcost = arr[i-1] * arr[k] * arr[j];
int total_ans = cost1 + cost2 + selfcost;
min_cost = Math.min(min_cost, total_ans);
}
return dp[i][j] = min_cost;
}
public static int dp_matrix_chain_multiplication_tabulation(int arr[]){
int n = arr.length;
// create dp
int dp[][] = new int[n][n];
// initialize
for(int i=0; i<n; i++){
dp[i][i] = 0;
}
//fill bottom up
for(int len=2; len <= n-1; len++){
for(int i=1; i<=n-len; i++){
int j = len + i-1;
int min_cost = Integer.MAX_VALUE;
for(int k=i; k<j; k++){
int cost1 = dp[i][k];
int cost2 = dp[k+1][j];
int cost3 = arr[i-1]*arr[k]*arr[j];
int total_cost = cost1 + cost2 + cost3;
min_cost = Math.min(min_cost, total_cost);
}
dp[i][j] = min_cost;
}
}
return dp[1][n-1];
}
public static int minimum_partitioning(int arr[]){
int sum = Arrays.stream(arr).sum();
// int set1 = knapsack_0_1(arr, sum/2, arr.length-1);
int set1 = knapsack_0_1_tabulation(arr, sum/2);
int set2 = sum - set1;
return Math.abs(set1 - set2);
}
public static int knapsack_0_1(int arr[], int W, int i){
if(i == 0 || W == 0){
return 0;
}
if(arr[i] <= W){ // valid condition
// take
int take = arr[i] + knapsack_0_1(arr, W-arr[i], i-1);
// leave
int leave = knapsack_0_1(arr, W, i-1);
return Math.max(take, leave);
}else{ // invalid condition
int leave = knapsack_0_1(arr, W, i-1);
return leave;
}
}
public static int knapsack_0_1_tabulation(int arr[], int W){
int n = arr.length;
int dp[][] = new int[n+1][W+1];
// if W == 0, ans -> 0
for(int i=0; i<=n; i++){
dp[i][0] = 0;
}
// if n == 0, ans -> 0
for(int j=0; j<=W; j++){
dp[0][j] = 0;
}
for(int i=1; i<=n; i++){
for(int j=1; j<=W; j++){
int val = arr[i-1];
if(val <= j){
int take = val + dp[i-1][j-val];
int leave = dp[i-1][j];
dp[i][j] = Math.max(take, leave);
}else{
int leave = dp[i-1][j];
dp[i][j] = leave;
}
}
}
return dp[n][W];
}
public static int minimum_array_jump(int arr[]){
int n = arr.length;
int dp[] = new int[n];
Arrays.fill(dp, -1);
dp[n-1] = 0;
for(int i=n-2; i>=0; i--){
int steps = arr[i];
int ans = Integer.MAX_VALUE;
for(int j=i+1; j<=i+steps && j<n; j++){
if(dp[j] != -1)
ans = Math.min(ans, dp[j]+1);
}
if(ans != Integer.MAX_VALUE)
dp[i] = ans;
}
return dp[0];
}
}