forked from IBM/verifiable-federated-learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
450 lines (378 loc) · 18 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
# Copyright (C) 2022 Verifiable Federated Learning Authors
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""
Main file to replicate the experiments using Verification Via Commitments (VVC)
in the Verifiable Federated Learning paper: https://openreview.net/pdf?id=0HIa3HIyIHN
"""
import os
import datetime
import copy
import concurrent.futures
import time
from typing import TypedDict, List, Dict, Optional, Tuple, TYPE_CHECKING
import numpy as np
import torch
from torch import optim
from util import Logger
from fl.setup import Setup
from fl.data import setup_mnist_clients, setup_femnist_clients, setup_cifar_clients
from fl.aggregator import Aggregator
from fl.fl_model import setup_model
if TYPE_CHECKING:
from fl.client import Client
from type_utils import Params
class ResumeInfo(TypedDict):
"""
A TypedDict class to define the types in the resume form checkpoint dictionary.
"""
to_resume: bool
resume_run: Optional[str]
resume_round: Optional[int]
class ConfigDict(TypedDict):
"""
A TypedDict class to define the types in the configuration dictionary.
"""
dataset: str
num_clients: int
clients_participating_per_round: int
fl_rounds: int
learning_rate: float
bsize: int
malicious_clients: int
secure: bool
malicious_aggregator: bool
num_colluding_clients: int
data_augmentation: bool
check_rounding: bool
encoder_base: int
to_log: bool
resume_info: ResumeInfo
save_path: str
key_size: int
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def get_clients(config_dic: ConfigDict) -> List["Client"]:
"""
Gets a list of fl clients as specified in the configuration dictionary
:param config_dic: configuration dictionary
:return: List of clients used for the experiment
"""
if config_dic["dataset"] in ["femnist", "merged_femnist"]:
return setup_femnist_clients(config_dic)
if config_dic["dataset"] == "mnist":
return setup_mnist_clients(config_dic)
if config_dic["dataset"] == "cifar":
return setup_cifar_clients(config_dic)
raise ValueError("Provided Dataset does not match")
def round_tensor_values(state_dict: dict, config_dic: ConfigDict) -> dict:
"""
Round tensors to a number of decimal places governed by config_dic['encoder_base']
:param state_dict: pytorch model's state dict
:param config_dic: configuration dictionary
:return: pytorch state dict with rounded tensor values
"""
rounded_dict = {}
for param in state_dict:
rounded_dict[param] = torch.round(state_dict[param], decimals=config_dic["encoder_base"])
return rounded_dict
def average_summed_values(model: torch.nn.Module, clients_participating_per_round: int) -> torch.nn.Module:
"""
As the protocol supports only secure sums, the division is moved here to be performed post-aggregation locally
by the clients.
:param model: the global model with weights which were summed in the aggregation.
:param clients_participating_per_round: number of clients which participated in the fl training round, not the total
number of clients
:return: the global model with weights which are now averaged
"""
divided_vals = {}
state_dict = model.state_dict()
for param in model.state_dict():
divided_vals[param] = state_dict[param] / clients_participating_per_round
model.load_state_dict(divided_vals)
return model
def compute_parallel_commits(
list_of_clients: List["Client"],
params: "Params",
flattened_clients: List[np.ndarray],
r_i_rounds: List[List[int]],
round_num: int,
config_dic: ConfigDict,
) -> List[concurrent.futures._base.Future]:
"""
Parallelize the commitments over the number of clients.
:param list_of_clients: List containing all the clients. We just need the compute_commitments method from any client
:param params: A Params object containing public parameters g, h, and q
:param flattened_clients: List of flattened client with weights as numpy array
:param r_i_rounds: Random numbers per round per client
:param round_num: The current FL round number
:param config_dic: Dictionary defining the configuration of the experiment
:return: commitment list from ProcessPoolExecutor
"""
max_workers = config_dic["clients_participating_per_round"]
with concurrent.futures.ProcessPoolExecutor(max_workers=max_workers) as executor:
results = [
executor.submit(
list_of_clients[i].compute_commitments, params, flattened_clients[i], r_i_rounds[round_num][i]
)
for i in range(max_workers)
]
concurrent.futures.wait(results)
return results
def fl_loop(
config_dic: ConfigDict,
params: Optional["Params"],
shamir_k: Optional[int],
r_i_rounds: Optional[List[List[int]]],
shares_rounds: Optional[List[List[Tuple[int, bytes]]]],
list_of_clients: List["Client"],
model: torch.nn.Module,
opt: torch.optim.Optimizer,
logger: Optional[Logger] = None,
) -> None:
"""
The primary function which runs the experiments
:param config_dic: the configuration that parametrises the experiments
:param params: A Params object containing public parameters g, h, and q
:param shamir_k: The k value for the shamir secret sharing protocol.
Needs to be greater than the number of malicious clients.
:param r_i_rounds: Random numbers per round per client
:param shares_rounds: The pre-computed shares, per round of the secret.
:param list_of_clients: List containing all the clients
:param model: pytorch model architecture
:param opt: pytorch optimizer
:param logger: logging utility object to save models and results.
:return: None
"""
client_times: Dict[str, dict] = {}
client_verification_times: Dict[str, Dict[str, float]] = {}
aggregator_times = {}
check_frequency = 100
if config_dic["dataset"] == "mnist":
check_frequency = 1
init_fl_round = 0
if config_dic["resume_info"]["to_resume"] and config_dic["resume_info"]["resume_round"] is not None:
init_fl_round = config_dic["resume_info"]["resume_round"] + 1
for round_num in range(init_fl_round, config_dic["fl_rounds"]):
start_time_of_round = time.time()
client_times[str(round_num)] = {}
client_verification_times[str(round_num)] = {}
initial_state_dic = copy.deepcopy(model.state_dict())
initial_opt_state_dic = copy.deepcopy(opt.state_dict())
client_models = []
client_opts = []
client_com = []
round_acc = []
round_loss = []
client_participating_index = np.random.choice(
a=len(list_of_clients), size=config_dic["clients_participating_per_round"], replace=False
)
flattened_clients = []
for cnum in client_participating_index:
model.load_state_dict(copy.deepcopy(initial_state_dic))
opt.load_state_dict(copy.deepcopy(initial_opt_state_dic))
model, opt, client_acc, client_loss = list_of_clients[cnum].train_loop(model=model, opt=opt)
client_models.append(copy.deepcopy(model.state_dict()))
client_opts.append(copy.deepcopy(opt.state_dict()))
# compute commitment
if config_dic["secure"] or config_dic["check_rounding"]:
client_models[-1] = round_tensor_values(client_models[-1], config_dic)
if config_dic["secure"]:
flattened_clients.append(
list_of_clients[cnum].flatten_model(client_models[-1])
) # due to cuda we need to do this here
round_acc.append(client_acc)
round_loss.append(client_loss)
if config_dic["secure"] and params is not None and r_i_rounds is not None:
print("Starting client commits", flush=True)
start_time_of_commits = time.time()
results = compute_parallel_commits(
list_of_clients, params, flattened_clients, r_i_rounds, round_num, config_dic
)
for res in results:
for check in res.result():
if isinstance(check, list):
client_com.append(check)
print("Total time when pooling ", time.time() - start_time_of_commits)
for cnum in client_participating_index:
client_times[str(round_num)][str(cnum)] = time.time() - start_time_of_commits
if logger is not None:
logger.log_times(client_times, file_name="client_times.json")
round_acc = np.concatenate(round_acc)
round_loss = np.concatenate(round_loss)
print(f"End of round {round_num}: loss {np.mean(round_loss)} acc {np.mean(round_acc)*100}", flush=True)
end_time_of_round = time.time()
if logger is not None:
logger.log_results(
list(map(str, [round_num, end_time_of_round - start_time_of_round])), file_name="round_times.csv"
)
if config_dic["secure"]:
print("Aggregator performing Secure Agg")
model, com_aggregator_model, aggregator_time = Aggregator.secure_fed_sum(
config_dic["malicious_aggregator"], model, client_models, client_com, config_dic
)
aggregator_times[str(round_num)] = aggregator_time
else:
time_pre = datetime.datetime.now()
model = Aggregator.fed_sum(model, client_models, config_dic)
aggregator_times[str(round_num)] = (datetime.datetime.now() - time_pre).total_seconds()
if logger is not None:
logger.log_times(aggregator_times, file_name="aggregator_times.json")
if (
config_dic["secure"]
and shares_rounds is not None
and (round_num % check_frequency == 0 or config_dic["malicious_aggregator"])
):
time_pre = datetime.datetime.now()
shares = shares_rounds[round_num][0:shamir_k]
client_shares_time = (datetime.datetime.now() - time_pre).total_seconds()
for cnum in client_participating_index:
print(f"Client {cnum} checking commits ", flush=True)
check, client_verification_time_2 = list_of_clients[cnum].verify_commitments(
shares, model.state_dict(), com_aggregator_model
)
client_verification_times[str(round_num)][str(cnum)] = client_verification_time_2 + client_shares_time
if not check:
print("Aggregator cheat!")
if logger is not None:
logger.log_times(client_verification_times, file_name="client_verification_times.json")
model = average_summed_values(
model=model, clients_participating_per_round=config_dic["clients_participating_per_round"]
)
if (round_num % 5 == 0 and round_num > 0) or round_num == config_dic["fl_rounds"] - 1:
running_test_loss, running_test_acc = compute_test_statistics(list_of_clients, model)
print(f"On round {round_num} test loss {running_test_loss}, test acc {running_test_acc}", flush=True)
if logger is not None:
logger.log_results(list(map(str, [round_num, running_test_loss, running_test_acc])))
logger.log_results(
list(map(str, [round_num, np.mean(round_loss), np.mean(round_acc)])), file_name="train_results.csv"
)
logger.save_models(model=model, opt=opt)
def compute_test_statistics(list_of_clients: List["Client"], model: torch.nn.Module) -> Tuple[np.ndarray, np.ndarray]:
"""
Computes the average test loss and accuracy weighted by the number of samples each client holds
:param list_of_clients: list of all clients
:param model: global model to evaluate
:return: average test loss and average test accuracy
"""
running_test_loss = []
running_test_acc = []
weighting = []
for client in list_of_clients:
test_loss, test_acc, num_samples = client.eval_model(model=model)
running_test_loss.append(test_loss)
running_test_acc.append(test_acc)
weighting.append(num_samples)
return np.average(running_test_loss, weights=weighting), np.average(running_test_acc, weights=weighting)
def init(
config_dic: ConfigDict, logger: Optional[Logger] = None
) -> Tuple[
Optional["Params"],
Optional[int],
Optional[List[List[int]]],
Optional[List[List[Tuple[int, bytes]]]],
List["Client"],
torch.nn.Module,
torch.optim.Optimizer,
]:
"""
Performs initial setup generating 1) the clients, 2) the model, and 3) parameters required by the protocol
:param config_dic: Dictionary defining the configuration of the experiment
:param logger: A utility class to save data and provide checkpointing info.
:return: The parameters required for the protocol, as well as the clients with their data, and the torch model and
optimizer.
"""
time_pre = datetime.datetime.now()
list_of_clients = get_clients(config_dic)
model = setup_model(dataset=config_dic["dataset"])
if config_dic["resume_info"]["to_resume"] and logger is not None:
model_path = logger.fetch_model_resume_file(config_dic)
print("loading model from ", model_path)
checkpoint = torch.load(model_path, map_location=torch.device(device))
print("loading model weights")
model.load_state_dict(checkpoint["model_head"])
print("Total model parameters ", sum(p.numel() for p in model.parameters()))
opt = optim.SGD(model.parameters(), lr=config_dic["learning_rate"])
if config_dic["resume_info"]["to_resume"]:
opt.load_state_dict(checkpoint["opt"])
# Trusted Setup
if config_dic["secure"]:
shamir_n = config_dic["clients_participating_per_round"]
shamir_k = config_dic["malicious_clients"] + 1
params, r_i_rounds, shares_rounds = Setup.setup(
config_dic["key_size"], shamir_n, shamir_k, config_dic["fl_rounds"]
)
if logger is not None:
logger.save_time("secure", time_pre)
return params, shamir_k, r_i_rounds, shares_rounds, list_of_clients, model, opt
if logger is not None:
logger.save_time("vanilla", time_pre)
return None, None, None, None, list_of_clients, model, opt
def main(config_dic: ConfigDict) -> None:
"""
Main that runs the experiments parameterised by the configuration dictionary.
:param config_dic: Dictionary defining the configuration of the experiment
:return: None
"""
if config_dic["to_log"]:
logger = Logger(config_dic)
else:
logger = None
params, shamir_k, r_i_rounds, shares_rounds, list_of_clients, model, opt = init(config_dic, logger)
fl_loop(config_dic, params, shamir_k, r_i_rounds, shares_rounds, list_of_clients, model, opt, logger)
if __name__ == "__main__":
resume_info: ResumeInfo = {"to_resume": False, "resume_run": None, "resume_round": None}
configuration: ConfigDict = {
"dataset": "mnist",
"num_clients": 20, # not applicable for femnist
"clients_participating_per_round": 10,
"fl_rounds": 50, # FL rounds: 50 for MNIST, 3000 for merged mnist, 3500 for CIFAR
"learning_rate": 0.01, # SGD optimiser learning rate
"bsize": 32, # batch size for training. 10 for merged mnist, 32 for other datasets
"malicious_clients": 2, # number of malicious clients (shamir_k = malicious_clients + 1)
"secure": True, # enable or disable verification - used for experiments
"malicious_aggregator": False, # if True, the aggregator cheat
"num_colluding_clients": 2, # must be equal or less than malicious_clients - 0 to disable
"data_augmentation": False, # if to augment the data. True only with CIFAR.
"check_rounding": True, # if to check the performance with rounding when not using the secure aggregation protocol
"encoder_base": 4, # number of decimal places of precision
"key_size": 1024, # 515, 1024, and 2048 will use pre-computed values
"to_log": False, # if to log the results
"resume_info": resume_info, # if to resume from a previous round. Information in the resume_info dictionary
"save_path": "./", # path to save the results and models
}
assert configuration["num_clients"] >= configuration["clients_participating_per_round"]
if not configuration["secure"]:
if (
configuration["malicious_clients"] != 0
and configuration["num_colluding_clients"] != 0
and configuration["malicious_aggregator"]
):
raise ValueError("If not using the secure protocol, then no malicious entities can be supported")
if configuration["secure"]:
configuration["save_path"] = os.path.join(
"experiments", configuration["dataset"], "parallel_secure_" + str(configuration["malicious_clients"])
)
else:
if configuration["check_rounding"]:
configuration["save_path"] = os.path.join(
"experiments",
configuration["dataset"],
"vanilla_rounded",
"encoder_base_" + str(configuration["encoder_base"]),
)
else:
configuration["save_path"] = os.path.join("experiments", configuration["dataset"], "vanilla")
main(configuration)