forked from intel/android-iio-sensors-hal
-
Notifications
You must be signed in to change notification settings - Fork 3
/
accel-calibration.c
220 lines (167 loc) · 6.25 KB
/
accel-calibration.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
/*
// Copyright (c) 2015 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
*/
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <utils/Log.h>
#include <hardware/sensors.h>
#include "common.h"
#include "calibration.h"
#include "utils.h"
/*
* This implements a crude way of estimating the accelerometer manufacturing mounting bias. We monitor x y and z distribution around a few strategic spots that
* should represent most hits when the device is stable (on earth!). We then try to derive an estimation of the accelerometer bias for each of these axes from
* that data, continuously. This is a very rough method that should only be used as a last resort for now.
*/
static float bucket_center[BUCKET_COUNT] = { -9.8, 0, 9.8 }; /* The spots we are most interested in */
#define ACCEL_CALIB_DATA_VERSION 1 /* Update this whenever the stored data structure changes */
#define ACCEL_CALIBRATION_PATH "/data/accel.conf" /* Location of saved calibration data */
#define REFRESH_INTERVAL 1000*1000*1000 /* Recompute bias estimation every second */
static void ascribe_sample (accel_cal_t* cal_data, int channel, float value)
{
/* Check if this falls within one of our ranges of interest */
float range_min;
float range_max;
int i;
int slice;
for (i=0; i<BUCKET_COUNT; i++) {
range_min = bucket_center[i] - BUCKET_TOLERANCE;
range_max = bucket_center[i] + BUCKET_TOLERANCE;
if (value >= range_min && value <= range_max) {
/* Find suitable bucket */
slice = (int) ((value-range_min) / (range_max-range_min) * (SLICES-1));
/* Increment counters */
cal_data->bucket[channel][i][slice]++;
cal_data->bucket_usage[channel][i]++;
return;
}
}
}
static float estimate_bias (accel_cal_t* cal_data, int channel)
{
/*
* The long term distribution within the bucket, for each of the buckets, should be centered (samples evenly distributed).
* Try to determine the position in the bucket that separates it in two portions holding as many samples, then compute an estimated bias for that axis
* (channel) based on that data.
*/
int i;
uint64_t half_of_the_samples;
uint64_t count;
float median;
float estimated_bucket_bias[BUCKET_COUNT] = {0};
uint64_t bias_weight[BUCKET_COUNT];
uint64_t total_weight;
float range_min;
float range_max;
float estimated_bias;
int slice;
for (i=0; i<BUCKET_COUNT; i++) {
half_of_the_samples = cal_data->bucket_usage[channel][i] / 2;
count = 0;
for (slice = 0; slice < SLICES; slice++) {
count += cal_data->bucket[channel][i][slice];
if (count >= half_of_the_samples) {
range_min = bucket_center[i] - BUCKET_TOLERANCE;
range_max = bucket_center[i] + BUCKET_TOLERANCE;
median = range_min + ((float) slice) / (SLICES-1) * (range_max-range_min);
estimated_bucket_bias[i] = median - bucket_center[i];
bias_weight[i] = count;
break;
}
}
}
/* Weight each of the estimated bucket bias values based on the number of samples collected */
total_weight = 0;
for (i=0; i<BUCKET_COUNT; i++)
total_weight += bias_weight[i];
if (total_weight == 0)
return 0.0;
estimated_bias = 0;
for (i=0; i<BUCKET_COUNT; i++)
if (bias_weight[i])
estimated_bias += estimated_bucket_bias[i] * (float) bias_weight[i] / (float) total_weight;
return estimated_bias;
}
void calibrate_accel (int s, sensors_event_t* event)
{
accel_cal_t* cal_data = (accel_cal_t*) sensor[s].cal_data;
uint64_t current_ts;
float x, y, z;
if (cal_data == NULL)
return;
x = event->data[0];
y = event->data[1];
z = event->data[2];
/* Analyze sample */
ascribe_sample(cal_data, 0, x);
ascribe_sample(cal_data, 1, y);
ascribe_sample(cal_data, 2, z);
current_ts = get_timestamp_boot();
/* Estimate bias using accumulated data, from time to time*/
if (current_ts >= cal_data->last_estimation_ts + REFRESH_INTERVAL) {
cal_data->last_estimation_ts = current_ts;
cal_data->accel_bias_x = estimate_bias(cal_data, 0);
cal_data->accel_bias_y = estimate_bias(cal_data, 1);
cal_data->accel_bias_z = estimate_bias(cal_data, 2);
}
ALOGV("Compensating for estimated accelerometer bias: x=%g, y=%g, z=%g\n", cal_data->accel_bias_x, cal_data->accel_bias_y, cal_data->accel_bias_z);
/* Apply compensation */
event->data[0] = x - cal_data->accel_bias_x;
event->data[1] = y - cal_data->accel_bias_y;
event->data[2] = z - cal_data->accel_bias_z;
}
void accel_cal_init (int s)
{
int fd;
int n;
accel_cal_t* cal_data = (accel_cal_t*) sensor[s].cal_data;
if (cal_data == NULL)
return;
if (cal_data->last_estimation_ts)
return; /* No need to overwrite perfectly good data at reenable time */
fd = open(ACCEL_CALIBRATION_PATH, O_RDONLY);
if (fd != -1) {
n = read(fd, cal_data, sizeof(accel_cal_t));
close(fd);
if (n == sizeof(accel_cal_t) &&
cal_data->version == ((ACCEL_CALIB_DATA_VERSION << 16) + sizeof(accel_cal_t)) &&
cal_data->bucket_count == BUCKET_COUNT &&
cal_data->slices == SLICES &&
cal_data->bucket_tolerance == BUCKET_TOLERANCE) {
cal_data->last_estimation_ts = 0;
return; /* We successfully loaded previously saved accelerometer calibration data */
}
}
/* Fall back to initial values */
memset(cal_data, 0, sizeof(accel_cal_t));
/* Store the parameters that are used with that data set, so we can check them against future version of the code to prevent inadvertent reuse */
cal_data->version = (ACCEL_CALIB_DATA_VERSION << 16) + sizeof(accel_cal_t);
cal_data->bucket_count = BUCKET_COUNT;
cal_data->slices = SLICES;
cal_data->bucket_tolerance = BUCKET_TOLERANCE;
}
void accel_cal_store (int s)
{
int fd;
accel_cal_t* cal_data = (accel_cal_t*) sensor[s].cal_data;
if (cal_data == NULL)
return;
fd = open(ACCEL_CALIBRATION_PATH, O_WRONLY | O_TRUNC | O_CREAT, S_IRUSR);
if (fd != -1) {
write(fd, cal_data, sizeof(accel_cal_t));
close(fd);
}
}