forked from jarredbultema/ts_helpers_package
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbacktest_coverage.py
427 lines (341 loc) · 16.2 KB
/
backtest_coverage.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
import datarobot as dr
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from statistics import mean
import re
def get_top_models_from_project(
project, n_models=1, data_subset='allBacktests', include_blenders=True, metric=None
):
"""
project: project object
DataRobot project
n_models: int
Number of top models to return
data_subset: str (optional)
Can be set to either allBacktests or holdout
include_blenders: boolean (optional)
Controls whether to include ensemble models
metric: str (optional)
Choose from list of 'MASE', 'RMSE', 'MAPE', 'SMAPE', 'MAE', 'R Squared', 'Gamma Deviance',
'SMAPE', 'Tweedie Deviance', 'Poisson Deviance', or 'RMSLE'
Returns:
--------
List of model objects from a DataRobot project
"""
assert data_subset in [
'backtest_1',
'allBacktests',
'holdout',
], 'data_subset must be either backtest_1, allBacktests, or holdout'
if n_models is not None:
assert isinstance(n_models, int), 'n_models must be an int'
if n_models is not None:
assert n_models >= 1, 'n_models must be greater than or equal to 1'
assert isinstance(include_blenders, bool), 'include_blenders must be a boolean'
mapper = {
'backtest_1': 'backtestingScores',
'allBacktests': 'backtesting',
'holdout': 'holdout',
}
if metric is None:
metric = project.metric
if data_subset == 'holdout':
project.unlock_holdout()
models = [
m
for m in project.get_datetime_models()
if m.backtests[0]['status'] != 'BACKTEST_BOUNDARIES_EXCEEDED'
] # if m.holdout_status != 'HOLDOUT_BOUNDARIES_EXCEEDED']
if data_subset == 'backtest_1':
# models = sorted(models, key=lambda m: np.mean([i for i in m.metrics[metric][mapper[data_subset]][0] if i]), reverse=False)
models = sorted(
models, key=lambda m: m.metrics[metric][mapper[data_subset]][0], reverse=False
)
elif data_subset == 'allBacktests':
models = sorted(
models,
key=lambda m: m.metrics[metric][mapper[data_subset]]
if m.metrics[metric][mapper[data_subset]] is not None
else np.nan,
reverse=False,
)
else:
try:
models = sorted(models, key=lambda m: m.metrics[metric][mapper[data_subset]], reverse=False)
except:
return f'This project does not have an appropriate {data_subset} configured'
if not include_blenders:
models = [m for m in models if m.model_category != 'blend']
if n_models is None:
n_models = len(models)
models = models[0:n_models]
assert len(models) > 0, 'You have not run any models for this project'
return models
def get_backtest_information(
p, models, entry, entry_count, ts_settings
):
"""
Get training and backtest durations from a model from one DataRobot project
p: datarobot.models.project.Project
DataRobot project object
entry: list
DataRobot model backtest information
entry_count: int/str
Counter for backtest number, or designation as holdout
ts_settings: dict
Parameters for time series project
Returns:
--------
list
"""
backtest_name = f'backtest_{entry_count}'
if not isinstance(entry_count, int):
backtest_name = 'holdout'
training_duration = re.search('\d*',entry['training_duration']).group(0) # .lstrip('P').rstrip('D')
training_start = pd.to_datetime(entry['training_end_date'].date())
training_end = pd.to_datetime(entry['training_start_date'].date())
validation_start = pd.to_datetime(entry['training_start_date'].date()) + pd.Timedelta(days= ts_settings['fd_start'])
validation_end = validation_start + pd.Timedelta(days=ts_settings['validation_duration'])
return [p, models[0], backtest_name, training_start, training_end, training_duration, validation_start, validation_end]
def get_training_and_backtest_windows(
projects, ts_settings, data_subset='allBacktests', metric= None
):
"""
Get training and backtest durations from models across multiple DataRobot projects
projects: list
DataRobot project object(s)
ts_settings: dict
Parameters for time series project
data_subset: str (optional)
Can be set to either allBacktests, backtest_n (n= Backtest number), holdout
metric: str (optional)
Project metric used to sort the DataRobot leaderboard
Choose from list of 'MASE', 'RMSE', 'MAPE', 'SMAPE', 'MAE', 'R Squared', 'Gamma Deviance',
'SMAPE', 'Tweedie Deviance', 'Poisson Deviance', or 'RMSLE'
Returns:
--------
pandas df
"""
assert isinstance(projects, list), 'Projects must be a list object'
durations = pd.DataFrame()
df_columns = ['DR project', 'DR model', 'backtest id', 'training start date','training end date'\
, 'duration', 'validation start date', 'validation end date']
backtest_error_count = 0
holdout_error_count = 0
print('Getting backtest information for all projects...')
for p in projects:
if metric is None:
metric = p.metric
project_data = []
if data_subset == 'allBacktests':
models = get_top_models_from_project(
p,
data_subset=data_subset,
include_blenders=False,
metric=metric,
)
backtest = models[0].backtests
for idx, entry in enumerate(backtest,1):
project_data.append(get_backtest_information(p, models, entry, idx, ts_settings))
elif re.search('backtest_*', data_subset):
models = get_top_models_from_project(
p,
data_subset='allBacktests',
include_blenders=False,
metric=metric,
)
if int(data_subset[-1]) > len(models[0].backtests):
return f'There are not {data_subset[-1]} backtests in this project. Please select a lower value.'
backtest = models[0].backtests[int(data_subset[-1])-1]
project_data.append(get_backtest_information(p, models, backtest, int(data_subset[-1]), ts_settings))
elif data_subset == 'all':
if metric is None:
metric = p.metric
try:
all_backtests = get_training_and_backtest_windows([p], ts_settings, data_subset= 'allBacktests', metric= metric)
durations = pd.concat((durations,pd.DataFrame(all_backtests, columns= df_columns)), axis=0)
except:
backtest_error_count += 1
try:
holdout_data = get_training_and_backtest_windows([p], ts_settings, data_subset= 'holdout', metric= metric)
durations = pd.concat((durations,pd.DataFrame(holdout_data, columns= df_columns)), axis=0)
except:
holdout_error_count += 1
elif data_subset == 'holdout':
models = get_top_models_from_project(
p,
data_subset=data_subset,
include_blenders=False,
metric=metric,
)
assert isinstance(models, list), 'holdout not configured for these projects'
backtest = models[0].backtests
project_data.append(get_backtest_information(p, models, backtest, data_subset, ts_settings))
else:
return "Only data_subset values of 'allBacktests', 'backtest_n' where n = backtest number, or 'holdout' are allowed"
durations = pd.concat((durations,pd.DataFrame(project_data, columns= df_columns)), axis=0)
if backtest_error_count > 0:
print(f'***** There were errors with backtests configuration in {backtest_error_count} projects. That data omitted *****\n')
if holdout_error_count > 0:
print(f'***** There were errors with holdout configuration in {holdout_error_count} projects. That data omitted *****\n')
return durations.fillna(0)
def check_series_backtests(cluster_information, series_name, ts_settings, backtest_information):
"""
Determines series-level coverage across multiple backtests
cluster_information: pandas df
Information about each series including a cluster id, output from add_cluster_labels()
series_name: str
Name of an individual series
ts_settings: dict
Parameters for time series project
backtest_information: pandas df
contains information on how many records are present for each series in each backtest
, output from get_training_and_backtest_windows()
Returns:
--------
Pandas DataFrame
"""
series_dates = cluster_information[cluster_information[ts_settings['series_id']] == series_name][ts_settings['date_col']]
cluster_id = cluster_information[cluster_information[ts_settings['series_id']] == series_name]['Cluster'].unique().tolist()[0]
if all(backtest_information['DR project'].astype(str).str.contains('_all_series')):
single_cluster = True
else:
single_cluster = False
if 0 in cluster_information['Cluster'].unique().tolist():
cluster_id += 1
present = []
absent = []
if single_cluster:
for test in backtest_information['backtest id'].unique().tolist():
start = backtest_information[backtest_information['backtest id'] == test]['validation start date'].tolist()[0]
end = backtest_information[backtest_information['backtest id'] == test]['validation end date'].tolist()[0] - pd.DateOffset(1)
if any(series_dates.between(start, end)):
present.append((test,np.sum(series_dates.between(start, end))))
if not any(series_dates.between(start, end)):
absent.append(test)
else:
cluster_data = backtest_information[backtest_information['DR project'].astype(str).str.contains(f'_Cluster-{cluster_id}')]
for test in backtest_information['backtest id'].unique().tolist():
try:
start = cluster_data[cluster_data['backtest id'] == test]['validation start date'].tolist()[0]
end = cluster_data[cluster_data['backtest id'] == test]['validation end date'].tolist()[0] - pd.DateOffset(1)
except:
absent.append(test)
continue
if any(series_dates.between(start, end)):
present.append((test,np.sum(series_dates.between(start, end))))
if not any(series_dates.between(start, end)):
absent.append(test)
return present, absent
def check_all_series_backtests(cluster_information, ts_settings, backtest_information):
"""
Plots series-level coverage across multiple backtests
cluster_information: pandas df
Information about each series including a cluster id, output from add_cluster_labels()
ts_settings: dict
Parameters for time series project
backtest_information: pandas df
contains information on how many records are present for each series in each backtest
, output from get_training_and_backtest_windows()
Returns:
--------
Pandas DataFrame
"""
df = pd.DataFrame([], columns= backtest_information['backtest id'].unique().tolist(), index= cluster_information[ts_settings['series_id']].unique().tolist())
for series in df.index.tolist():
present, absent = check_series_backtests(cluster_information, series, ts_settings, backtest_information)
df.loc[series] = dict(present)
return df.fillna(0).astype(int)
def get_series_in_backtests(df, data_subset, present= True, threshold= None):
"""
Selects the subset of series that are present or absent in any defined backtest
df: Pandas df
Output of check_all_series_backtests(), contains information on presence of series in each backtest period
data_subset: str
Which data_subsets should be included in analysis, accpets individual backtests ('backtest_1', 'allBacktests', 'holdout')
present: bool
Select series that are present (True) or absent (False) from backtesting window(s)
threshold: np.float (0.0 - 1.0)
cutoff threshold to determine presence
Returns:
--------
series: list
Series names that match the selection conditions
"""
avail_backtests = df.columns.tolist()[1:]
if data_subset.lower() == 'allbacktests':
select_backtest = avail_backtests
else:
assert data_subset in [avail_backtests], 'data_subset must be present in input df'
select_backtest = data_subset.lower()
cutoff = 0
if threshold is not None:
cutoff = int(df[select_backtest].max().values.max() * threshold)
if present:
print(f'Getting series with present in {cutoff} or more rows in {", ".join(select_backtest)} ...')
series = df[(df[select_backtest].T >= cutoff).any()].iloc[:,0].tolist()
else:
print(f'Getting series with present in {cutoff} or fewer rows rows in {", ".join(select_backtest)} ...')
if cutoff == 0:
series = df[(df[select_backtest].T == cutoff).any()].iloc[:,0].tolist()
else:
series = df[(df[select_backtest].T < cutoff).any()].iloc[:,0].tolist()
return series
def plot_series_backtest_coverage(series_backtests, ts_settings, n=50):
"""
Plots series-level coverage across multiple backtests
series_backtests: pandas df
Output from check_all_series_backtests()
ts_settings: dict
Parameters for time series project
data_subset: str
Choose from either holdout or allBacktests
n: int
Number of series to display
Returns:
--------
Plotly barplot
"""
n_series = len(series_backtests.index.tolist())
n = min(n_series, n)
series_backtests.reset_index(inplace= True)
series_backtests = series_backtests.sort_values('index') # [0:n,:]
fig = go.Figure(data= [
go.Bar(name='backtest 1', x=series_backtests['index'], y=series_backtests['backtest_1']),
go.Bar(name='backtest 2', x=series_backtests['index'], y=series_backtests['backtest_2']),
go.Bar(name='backtest 3', x=series_backtests['index'], y=series_backtests['backtest_3'])
])
fig.update_layout(barmode='group', title_text=f'Series Presence in Backtests', height= 400)
fig.update_yaxes(title='Records present in backtest')
fig.update_xaxes(tickangle=45)
fig.show()
if __name__ == '__main__':
# get DR project(s)
projects = [x for x in dr.Project.list() if 'tag' in str(x) and x.stage == 'modeling']
# Set default values
target= 'sale_amount_sum'
date_col = 'date'
series_id = 'item_name'
kia = None # No columns known in advance for this dataset!
num_backtests = 3
validation_duration = 30 # want to predict 1-monath sales
holdout_duration = 30
disable_holdout = False
metric = 'RMSE' # what makes most sense in this case?
use_time_series = True
fd_start = 1
fd_end = 31 # forecasting sales for the next month
fdw_start = -28 # we should iterate on this
fdw_end = 0
max_date = df_w_clusters['date'].max()
# create Time Series settings
ts_settings = {'max_date':max_date, 'known_in_advance':kia, 'num_backtests':num_backtests,
'validation_duration':validation_duration, 'holdout_duration':holdout_duration,
'disable_holdout':disable_holdout,'use_time_series':use_time_series,
'series_id':series_id, 'metric':metric, 'target':target, 'date_col':date_col,
'fd_start':fd_start, 'fd_end':fd_end, 'fdw_start':fdw_start, 'fdw_end':fdw_end}
# calculate how many records are present for all series in backtests
projects_backtesting_info = ts.get_training_and_backtest_windows(projects, ts_settings, data_subset='allBacktests', metric= None)
projects_backtests = ts.check_all_series_backtests(training_dataset, ts_settings, projects_backtesting_info)
ts.plot_series_backtest_coverage(projects_backtests, ts_settings, n=50)