Helper Functions for CloudML Engine Hypertune Services.
- Google CloudML Engine Overview.
- Google CloudML Engine Hyperparameter Tuning Overview.
Install via pip:
pip install cloudml-hypertune
import hypertune
hpt = hypertune.HyperTune()
hpt.report_hyperparameter_tuning_metric(
hyperparameter_metric_tag='my_metric_tag',
metric_value=0.987,
global_step=1000)
By default, the metric entries will be stored to /tmp/hypertune/output.metrics
in json format:
{"global_step": "1000", "my_metric_tag": "0.987", "timestamp": 1525851440.123456, "trial": "0"}
- Apache 2.0