-
Notifications
You must be signed in to change notification settings - Fork 95
/
gcs_to_jdbc.py
150 lines (133 loc) · 5.6 KB
/
gcs_to_jdbc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
# Copyright 2023 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict, Sequence, Optional, Any
from logging import Logger
import argparse
import pprint
from pyspark.sql import SparkSession
from dataproc_templates import BaseTemplate
import dataproc_templates.util.template_constants as constants
from dataproc_templates.util.argument_parsing import add_spark_options
from dataproc_templates.util.dataframe_reader_wrappers import ingest_dataframe_from_cloud_storage
__all__ = ['GCSToJDBCTemplate']
class GCSToJDBCTemplate(BaseTemplate):
"""
Dataproc template implementing loads from Cloud Storage into JDBC
"""
@staticmethod
def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]:
parser: argparse.ArgumentParser = argparse.ArgumentParser()
parser.add_argument(
f'--{constants.GCS_JDBC_INPUT_LOCATION}',
dest=constants.GCS_JDBC_INPUT_LOCATION,
required=True,
help='Cloud Storage location of the input files'
)
parser.add_argument(
f'--{constants.GCS_JDBC_INPUT_FORMAT}',
dest=constants.GCS_JDBC_INPUT_FORMAT,
required=True,
help='Input file format (one of: avro,parquet,csv,json,delta)',
choices=[
constants.FORMAT_AVRO,
constants.FORMAT_PRQT,
constants.FORMAT_CSV,
constants.FORMAT_JSON,
constants.FORMAT_DELTA
]
)
add_spark_options(parser, constants.get_csv_input_spark_options("gcs.jdbc.input."))
parser.add_argument(
f'--{constants.GCS_JDBC_OUTPUT_TABLE}',
dest=constants.GCS_JDBC_OUTPUT_TABLE,
required=True,
help='JDBC output table name'
)
parser.add_argument(
f'--{constants.GCS_JDBC_OUTPUT_MODE}',
dest=constants.GCS_JDBC_OUTPUT_MODE,
required=False,
default=constants.OUTPUT_MODE_APPEND,
help=(
'Output write mode '
'(one of: append,overwrite,ignore,errorifexists) '
'(Defaults to append)'
),
choices=[
constants.OUTPUT_MODE_OVERWRITE,
constants.OUTPUT_MODE_APPEND,
constants.OUTPUT_MODE_IGNORE,
constants.OUTPUT_MODE_ERRORIFEXISTS
]
)
parser.add_argument(
f'--{constants.GCS_JDBC_OUTPUT_URL}',
dest=constants.GCS_JDBC_OUTPUT_URL,
required=True,
help='JDBC output URL'
)
parser.add_argument(
f'--{constants.GCS_JDBC_OUTPUT_DRIVER}',
dest=constants.GCS_JDBC_OUTPUT_DRIVER,
required=True,
help='JDBC output driver name'
)
parser.add_argument(
f'--{constants.GCS_JDBC_BATCH_SIZE}',
dest=constants.GCS_JDBC_BATCH_SIZE,
required=False,
default=1000,
help='JDBC output batch size'
)
parser.add_argument(
f'--{constants.GCS_JDBC_NUMPARTITIONS}',
dest=constants.GCS_JDBC_NUMPARTITIONS,
required=False,
help='The maximum number of partitions to be used for parallelism in table writing'
)
known_args: argparse.Namespace
known_args, _ = parser.parse_known_args(args)
return vars(known_args)
def run(self, spark: SparkSession, args: Dict[str, Any]) -> None:
logger: Logger = self.get_logger(spark=spark)
# Arguments
input_location: str = args[constants.GCS_JDBC_INPUT_LOCATION]
input_format: str = args[constants.GCS_JDBC_INPUT_FORMAT]
jdbc_url: str = args[constants.GCS_JDBC_OUTPUT_URL]
jdbc_table: str = args[constants.GCS_JDBC_OUTPUT_TABLE]
output_mode: str = args[constants.GCS_JDBC_OUTPUT_MODE]
output_driver: str = args[constants.GCS_JDBC_OUTPUT_DRIVER]
batch_size: int = args[constants.GCS_JDBC_BATCH_SIZE]
jdbc_numpartitions: int = args[constants.GCS_JDBC_NUMPARTITIONS]
ignore_keys = {constants.GCS_JDBC_OUTPUT_URL}
filtered_args = {key:val for key,val in args.items() if key not in ignore_keys}
logger.info(
"Starting Cloud Storage to JDBC Spark job with parameters:\n"
f"{pprint.pformat(filtered_args)}"
)
# Read
input_data = ingest_dataframe_from_cloud_storage(spark, args, input_location, input_format, "gcs.jdbc.input.")
# Write
if not jdbc_numpartitions:
jdbc_numpartitions = input_data.rdd.getNumPartitions()
# TODO Convert this call to a function in dataproc_templates.util.dataframe_writer_wrappers
input_data.write \
.format(constants.FORMAT_JDBC) \
.option(constants.JDBC_URL, jdbc_url) \
.option(constants.JDBC_TABLE, jdbc_table) \
.option(constants.JDBC_DRIVER, output_driver) \
.option(constants.JDBC_BATCH_SIZE, batch_size) \
.option(constants.JDBC_NUMPARTITIONS, jdbc_numpartitions) \
.mode(output_mode) \
.save()