-
Notifications
You must be signed in to change notification settings - Fork 95
/
s3_to_bigquery.py
171 lines (145 loc) · 6.05 KB
/
s3_to_bigquery.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
# Copyright 2022 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict, Sequence, Optional, Any
from logging import Logger
import argparse
import pprint
from pyspark.sql import SparkSession, DataFrame
from dataproc_templates import BaseTemplate
import dataproc_templates.util.template_constants as constants
__all__ = ['S3ToBigQueryTemplate']
class S3ToBigQueryTemplate(BaseTemplate):
"""
Dataproc template implementing exports from Amazon S3 to BigQuery
"""
@staticmethod
def parse_args(args: Optional[Sequence[str]] = None) -> Dict[str, Any]:
parser: argparse.ArgumentParser = argparse.ArgumentParser()
parser.add_argument(
f'--{constants.S3_BQ_INPUT_LOCATION}',
dest=constants.S3_BQ_INPUT_LOCATION,
required=True,
help='Amazon S3 input location. Input location must begin with s3a://'
)
parser.add_argument(
f'--{constants.S3_BQ_ACCESS_KEY}',
dest=constants.S3_BQ_ACCESS_KEY,
required=True,
help='Access key to access Amazon S3 bucket'
)
parser.add_argument(
f'--{constants.S3_BQ_SECRET_KEY}',
dest=constants.S3_BQ_SECRET_KEY,
required=True,
help='Secret key to access Amazon S3 bucket'
)
parser.add_argument(
f'--{constants.S3_BQ_INPUT_FORMAT}',
dest=constants.S3_BQ_INPUT_FORMAT,
required=True,
help='Input file format in Amazon S3 bucket (one of : avro, parquet, csv, json)',
choices=[
constants.FORMAT_AVRO,
constants.FORMAT_PRQT,
constants.FORMAT_CSV,
constants.FORMAT_JSON
]
)
parser.add_argument(
f'--{constants.S3_BQ_OUTPUT_DATASET_NAME}',
dest=constants.S3_BQ_OUTPUT_DATASET_NAME,
required=True,
help='BigQuery dataset for the output table'
)
parser.add_argument(
f'--{constants.S3_BQ_OUTPUT_TABLE_NAME}',
dest=constants.S3_BQ_OUTPUT_TABLE_NAME,
required=True,
help='BigQuery output table name'
)
parser.add_argument(
f'--{constants.S3_BQ_TEMP_BUCKET_NAME}',
dest=constants.S3_BQ_TEMP_BUCKET_NAME,
required=True,
help='Pre existing GCS bucket name where temporary files are staged'
)
parser.add_argument(
f'--{constants.S3_BQ_OUTPUT_MODE}',
dest=constants.S3_BQ_OUTPUT_MODE,
required=False,
default=constants.OUTPUT_MODE_APPEND,
help=(
'Output write mode '
'(one of: append,overwrite,ignore,errorifexists)'
'(Defaults to append)'
),
choices=[
constants.OUTPUT_MODE_OVERWRITE,
constants.OUTPUT_MODE_APPEND,
constants.OUTPUT_MODE_IGNORE,
constants.OUTPUT_MODE_ERRORIFEXISTS
]
)
known_args: argparse.Namespace
known_args, _ = parser.parse_known_args(args)
return vars(known_args)
def run(self, spark: SparkSession, args: Dict[str, Any]) -> None:
logger: Logger = self.get_logger(spark=spark)
# Arguments
input_file_location: str = args[constants.S3_BQ_INPUT_LOCATION]
access_key: str = args[constants.S3_BQ_ACCESS_KEY]
secret_key: str = args[constants.S3_BQ_SECRET_KEY]
input_file_format: str = args[constants.S3_BQ_INPUT_FORMAT]
bq_dataset: str = args[constants.S3_BQ_OUTPUT_DATASET_NAME]
bq_table: str = args[constants.S3_BQ_OUTPUT_TABLE_NAME]
bq_temp_bucket: str = args[constants.S3_BQ_TEMP_BUCKET_NAME]
output_mode: str = args[constants.S3_BQ_OUTPUT_MODE]
ignore_keys = {constants.S3_BQ_ACCESS_KEY, constants.S3_BQ_SECRET_KEY}
filtered_args = {key:val for key,val in args.items() if key not in ignore_keys}
logger.info(
"Starting Amazon S3 to Bigquery spark job with parameters:\n"
f"{pprint.pformat(filtered_args)}"
)
# Set configuration to connect to Amazon S3
spark._jsc.hadoopConfiguration() \
.set(constants.AWS_S3ENDPOINT, constants.S3_BQ_ENDPOINT_VALUE)
spark._jsc.hadoopConfiguration() \
.set(constants.AWS_S3ACCESSKEY, access_key)
spark._jsc.hadoopConfiguration() \
.set(constants.AWS_S3SECRETKEY, secret_key)
# Read
input_data: DataFrame
if input_file_format == constants.FORMAT_PRQT:
input_data = spark.read \
.parquet(input_file_location)
elif input_file_format == constants.FORMAT_AVRO:
input_data = spark.read \
.format(constants.FORMAT_AVRO_EXTD) \
.load(input_file_location)
elif input_file_format == constants.FORMAT_CSV:
input_data = spark.read \
.format(constants.FORMAT_CSV) \
.option(constants.CSV_HEADER, True) \
.option(constants.CSV_INFER_SCHEMA, True) \
.load(input_file_location)
elif input_file_format == constants.FORMAT_JSON:
input_data = spark.read \
.json(input_file_location)
# Write
input_data.write \
.format(constants.FORMAT_BIGQUERY) \
.option(constants.TABLE, bq_dataset + "." + bq_table) \
.option(constants.TEMP_GCS_BUCKET, bq_temp_bucket) \
.mode(output_mode) \
.save()