forked from guanzhi/GmSSL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsm3_sse.c
260 lines (222 loc) · 6.22 KB
/
sm3_sse.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
/*
* Copyright 2014-2023 The GmSSL Project. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
*
* http://www.apache.org/licenses/LICENSE-2.0
*/
#include <string.h>
#include <gmssl/sm3.h>
#include <gmssl/error.h>
#include <immintrin.h>
//#include <x86intrin.h>
/*
_mm_xor_si128 SSE2 <emmintrin.h>
_mm_andnot_si128 SSE2
_mm_and_si128 SSE2
_mm_slli_epi32 SSE2
_mm_srli_epi32 SSE2
_mm_setr_epi8 SSE2
_mm_loadu_si128 SSE2
_mm_storeu_si128 SSE2
_mm_shuffle_epi8 SSSE3 <tmmintrin.h>
_storebe_i32 MOVBE <immintrin.h>
*/
#define PUTU32(p,V) _storebe_i32((p),(V))
#define _mm_rotl_epi32(X,i) \
_mm_xor_si128(_mm_slli_epi32((X),(i)), _mm_srli_epi32((X),32-(i)))
#define ROL32(x,n) (((x)<<(n)) | ((x)>>(32-(n))))
#define P0(x) ((x) ^ ROL32((x), 9) ^ ROL32((x),17))
#define P1(x) ((x) ^ ROL32((x),15) ^ ROL32((x),23))
#define FF00(x,y,z) ((x) ^ (y) ^ (z))
#define FF16(x,y,z) (((x)&(y)) | ((x)&(z)) | ((y)&(z)))
#define GG00(x,y,z) ((x) ^ (y) ^ (z))
#define GG16(x,y,z) ((((y)^(z)) & (x)) ^ (z))
static uint32_t K[64] = {
0x79cc4519U, 0xf3988a32U, 0xe7311465U, 0xce6228cbU,
0x9cc45197U, 0x3988a32fU, 0x7311465eU, 0xe6228cbcU,
0xcc451979U, 0x988a32f3U, 0x311465e7U, 0x6228cbceU,
0xc451979cU, 0x88a32f39U, 0x11465e73U, 0x228cbce6U,
0x9d8a7a87U, 0x3b14f50fU, 0x7629ea1eU, 0xec53d43cU,
0xd8a7a879U, 0xb14f50f3U, 0x629ea1e7U, 0xc53d43ceU,
0x8a7a879dU, 0x14f50f3bU, 0x29ea1e76U, 0x53d43cecU,
0xa7a879d8U, 0x4f50f3b1U, 0x9ea1e762U, 0x3d43cec5U,
0x7a879d8aU, 0xf50f3b14U, 0xea1e7629U, 0xd43cec53U,
0xa879d8a7U, 0x50f3b14fU, 0xa1e7629eU, 0x43cec53dU,
0x879d8a7aU, 0x0f3b14f5U, 0x1e7629eaU, 0x3cec53d4U,
0x79d8a7a8U, 0xf3b14f50U, 0xe7629ea1U, 0xcec53d43U,
0x9d8a7a87U, 0x3b14f50fU, 0x7629ea1eU, 0xec53d43cU,
0xd8a7a879U, 0xb14f50f3U, 0x629ea1e7U, 0xc53d43ceU,
0x8a7a879dU, 0x14f50f3bU, 0x29ea1e76U, 0x53d43cecU,
0xa7a879d8U, 0x4f50f3b1U, 0x9ea1e762U, 0x3d43cec5U,
};
void sm3_compress_blocks(uint32_t digest[8], const uint8_t *data, size_t blocks)
{
uint32_t A;
uint32_t B;
uint32_t C;
uint32_t D;
uint32_t E;
uint32_t F;
uint32_t G;
uint32_t H;
uint32_t W[68];
uint32_t SS1, SS2, TT1, TT2;
int j;
__m128i X, T, R;
__m128i M = _mm_setr_epi32(0, 0, 0, 0xffffffff);
__m128i V = _mm_setr_epi8(3,2,1,0,7,6,5,4,11,10,9,8,15,14,13,12);
while (blocks--) {
A = digest[0];
B = digest[1];
C = digest[2];
D = digest[3];
E = digest[4];
F = digest[5];
G = digest[6];
H = digest[7];
for (j = 0; j < 16; j += 4) {
X = _mm_loadu_si128((__m128i *)(data + j * 4));
X = _mm_shuffle_epi8(X, V);
_mm_storeu_si128((__m128i *)(W + j), X);
}
for (j = 16; j < 68; j += 4) {
/* X = (W[j - 3], W[j - 2], W[j - 1], 0) */
X = _mm_loadu_si128((__m128i *)(W + j - 3));
X = _mm_andnot_si128(M, X);
X = _mm_rotl_epi32(X, 15);
T = _mm_loadu_si128((__m128i *)(W + j - 9));
X = _mm_xor_si128(X, T);
T = _mm_loadu_si128((__m128i *)(W + j - 16));
X = _mm_xor_si128(X, T);
/* P1() */
T = _mm_rotl_epi32(X, (23 - 15));
T = _mm_xor_si128(T, X);
T = _mm_rotl_epi32(T, 15);
X = _mm_xor_si128(X, T);
T = _mm_loadu_si128((__m128i *)(W + j - 13));
T = _mm_rotl_epi32(T, 7);
X = _mm_xor_si128(X, T);
T = _mm_loadu_si128((__m128i *)(W + j - 6));
X = _mm_xor_si128(X, T);
/* W[j + 3] ^= P1(ROL32(W[j + 1], 15)) */
R = _mm_shuffle_epi32(X, 0);
R = _mm_and_si128(R, M);
T = _mm_rotl_epi32(R, 15);
T = _mm_xor_si128(T, R);
T = _mm_rotl_epi32(T, 9);
R = _mm_xor_si128(R, T);
R = _mm_rotl_epi32(R, 6);
X = _mm_xor_si128(X, R);
_mm_storeu_si128((__m128i *)(W + j), X);
}
for (j = 0; j < 16; j++) {
SS1 = ROL32((ROL32(A, 12) + E + K[j]), 7);
SS2 = SS1 ^ ROL32(A, 12);
TT1 = FF00(A, B, C) + D + SS2 + (W[j] ^ W[j + 4]);
TT2 = GG00(E, F, G) + H + SS1 + W[j];
D = C;
C = ROL32(B, 9);
B = A;
A = TT1;
H = G;
G = ROL32(F, 19);
F = E;
E = P0(TT2);
}
for (; j < 64; j++) {
SS1 = ROL32((ROL32(A, 12) + E + K[j]), 7);
SS2 = SS1 ^ ROL32(A, 12);
TT1 = FF16(A, B, C) + D + SS2 + (W[j] ^ W[j + 4]);
TT2 = GG16(E, F, G) + H + SS1 + W[j];
D = C;
C = ROL32(B, 9);
B = A;
A = TT1;
H = G;
G = ROL32(F, 19);
F = E;
E = P0(TT2);
}
digest[0] ^= A;
digest[1] ^= B;
digest[2] ^= C;
digest[3] ^= D;
digest[4] ^= E;
digest[5] ^= F;
digest[6] ^= G;
digest[7] ^= H;
data += 64;
}
}
void sm3_init(SM3_CTX *ctx)
{
memset(ctx, 0, sizeof(*ctx));
ctx->digest[0] = 0x7380166F;
ctx->digest[1] = 0x4914B2B9;
ctx->digest[2] = 0x172442D7;
ctx->digest[3] = 0xDA8A0600;
ctx->digest[4] = 0xA96F30BC;
ctx->digest[5] = 0x163138AA;
ctx->digest[6] = 0xE38DEE4D;
ctx->digest[7] = 0xB0FB0E4E;
}
void sm3_update(SM3_CTX *ctx, const uint8_t *data, size_t data_len)
{
size_t blocks;
ctx->num &= 0x3f;
if (ctx->num) {
size_t left = SM3_BLOCK_SIZE - ctx->num;
if (data_len < left) {
memcpy(ctx->block + ctx->num, data, data_len);
ctx->num += data_len;
return;
} else {
memcpy(ctx->block + ctx->num, data, left);
sm3_compress_blocks(ctx->digest, ctx->block, 1);
ctx->nblocks++;
data += left;
data_len -= left;
}
}
blocks = data_len / SM3_BLOCK_SIZE;
if (blocks) {
sm3_compress_blocks(ctx->digest, data, blocks);
ctx->nblocks += blocks;
data += SM3_BLOCK_SIZE * blocks;
data_len -= SM3_BLOCK_SIZE * blocks;
}
ctx->num = data_len;
if (data_len) {
memcpy(ctx->block, data, data_len);
}
}
void sm3_finish(SM3_CTX *ctx, uint8_t *digest)
{
int i;
ctx->num &= 0x3f;
ctx->block[ctx->num] = 0x80;
if (ctx->num <= SM3_BLOCK_SIZE - 9) {
memset(ctx->block + ctx->num + 1, 0, SM3_BLOCK_SIZE - ctx->num - 9);
} else {
memset(ctx->block + ctx->num + 1, 0, SM3_BLOCK_SIZE - ctx->num - 1);
sm3_compress_blocks(ctx->digest, ctx->block, 1);
memset(ctx->block, 0, SM3_BLOCK_SIZE - 8);
}
PUTU32(ctx->block + 56, ctx->nblocks >> 23);
PUTU32(ctx->block + 60, (ctx->nblocks << 9) + (ctx->num << 3));
sm3_compress_blocks(ctx->digest, ctx->block, 1);
for (i = 0; i < 8; i++) {
PUTU32(digest + i*4, ctx->digest[i]);
}
}
void sm3_digest(const uint8_t *msg, size_t msglen,
uint8_t dgst[SM3_DIGEST_SIZE])
{
SM3_CTX ctx;
sm3_init(&ctx);
sm3_update(&ctx, msg, msglen);
sm3_finish(&ctx, dgst);
memset(&ctx, 0, sizeof(ctx));
}