forked from guanzhi/GmSSL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsm4_rng.c
258 lines (206 loc) · 6.19 KB
/
sm4_rng.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
/*
* Copyright 2014-2022 The GmSSL Project. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
*
* http://www.apache.org/licenses/LICENSE-2.0
*/
// see GM/T 0105-2021 Design Guide for Software-based Random Number Generators
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <assert.h>
#include <gmssl/mem.h>
#include <gmssl/rand.h>
#include <gmssl/error.h>
#include <gmssl/sm4_cbc_mac.h>
#include <gmssl/sm4_rng.h>
/*
u8[16] R0, R1
(R0,R1) = sm4_df(in):
L = nbytes(in)
N = 32 -- nbytes(R0||R1)
S = be32(L) || be32(N) || in || 0x80 || 0x00^*, nbytes(S) = 0 (mod 16)
K = 0x000102030405060708090a0b0c0d0e0f
T = CBC_MAC(K, be32(0) || 0x00^12 || S) = CBC_MAC(K, be32(0) || 0x00^12 || be32(L) || be32(N) || in || 0x80)
X = CBC_MAC(K, be32(1) || 0x00^12 || S) = CBC_MAC(K, be32(1) || 0x00^12 || be32(L) || be32(N) || in || 0x80)
K = T
R0 = sm4(K, X)
R1 = sm4(K, R0)
*/
typedef struct {
SM4_CBC_MAC_CTX cbc_mac_ctx[2];
uint32_t len;
uint32_t len_check;
} SM4_DF_CTX;
static void sm4_df_init(SM4_DF_CTX *df_ctx, size_t len)
{
const uint8_t key[16] = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15};
uint8_t prefix[16] = {0};
uint8_t Lbuf[4] = {0};
uint8_t Nbuf[4] = {0};
Lbuf[0] = (len >> 24) & 0xff;
Lbuf[1] = (len >> 16) & 0xff;
Lbuf[2] = (len >> 8) & 0xff;
Lbuf[3] = len & 0xff;
Nbuf[3] = 32;
sm4_cbc_mac_init(&df_ctx->cbc_mac_ctx[0], key);
sm4_cbc_mac_update(&df_ctx->cbc_mac_ctx[0], prefix, 16);
sm4_cbc_mac_update(&df_ctx->cbc_mac_ctx[0], Lbuf, 4);
sm4_cbc_mac_update(&df_ctx->cbc_mac_ctx[0], Nbuf, 4);
prefix[3] = 1;
sm4_cbc_mac_init(&df_ctx->cbc_mac_ctx[1], key);
sm4_cbc_mac_update(&df_ctx->cbc_mac_ctx[1], prefix, 16);
sm4_cbc_mac_update(&df_ctx->cbc_mac_ctx[1], Lbuf, 4);
sm4_cbc_mac_update(&df_ctx->cbc_mac_ctx[1], Nbuf, 4);
df_ctx->len = (uint32_t)len;
df_ctx->len_check = 0;
}
static void sm4_df_update(SM4_DF_CTX *df_ctx, const uint8_t *data, size_t datalen)
{
sm4_cbc_mac_update(&df_ctx->cbc_mac_ctx[0], data, datalen);
sm4_cbc_mac_update(&df_ctx->cbc_mac_ctx[1], data, datalen);
df_ctx->len_check += datalen;
}
static void sm4_df_finish(SM4_DF_CTX *df_ctx, uint8_t out[32])
{
const uint8_t suffix[1] = {0x80};
uint8_t K[16];
uint8_t X[16];
SM4_KEY sm4_key;
assert(df_ctx->len == df_ctx->len_check);
sm4_cbc_mac_update(&df_ctx->cbc_mac_ctx[0], suffix, 1);
sm4_cbc_mac_finish(&df_ctx->cbc_mac_ctx[0], K);
sm4_cbc_mac_update(&df_ctx->cbc_mac_ctx[1], suffix, 1);
sm4_cbc_mac_finish(&df_ctx->cbc_mac_ctx[1], X);
sm4_set_encrypt_key(&sm4_key, K);
sm4_encrypt(&sm4_key, X, out);
sm4_encrypt(&sm4_key, out, out + 16);
gmssl_secure_clear(K, sizeof(K));
gmssl_secure_clear(X, sizeof(X));
gmssl_secure_clear(&sm4_key, sizeof(sm4_key));
}
static void be_incr(uint8_t a[16])
{
int i;
for (i = 15; i >= 0; i--) {
a[i]++;
if (a[i]) break;
}
}
int sm4_rng_update(SM4_RNG *rng, const uint8_t seed[32])
{
SM4_KEY sm4_key;
sm4_set_encrypt_key(&sm4_key, rng->K);
be_incr(rng->V);
sm4_encrypt(&sm4_key, rng->V, rng->K);
be_incr(rng->V);
sm4_encrypt(&sm4_key, rng->V, rng->V);
memxor(rng->K, seed, 16);
memxor(rng->V, seed + 16, 16);
return 1;
}
int sm4_rng_init(SM4_RNG *rng, const uint8_t *nonce, size_t nonce_len,
const uint8_t *label, size_t label_len)
{
SM4_DF_CTX df_ctx;
uint8_t entropy[512];
uint8_t seed[32];
// get_entropy, 512-byte might be too long for some system RNGs
if (rand_bytes(entropy, 256) != 1
|| rand_bytes(entropy + 256, 256) != 1) {
error_print();
return -1;
}
// seed = sm4_df(entropy || nonce || label)
sm4_df_init(&df_ctx, sizeof(entropy) + nonce_len + label_len);
sm4_df_update(&df_ctx, entropy, sizeof(entropy));
sm4_df_update(&df_ctx, nonce, nonce_len);
sm4_df_update(&df_ctx, label, label_len);
sm4_df_finish(&df_ctx, seed);
memset(rng->K, 0, 16);
memset(rng->V, 0, 16);
// (K, V) = sm3_rng_update(seed, K, V)
sm4_rng_update(rng, seed);
// reseed_counter = 1, last_ressed_time = now()
rng->reseed_counter = 1;
rng->last_reseed_time = time(NULL);
gmssl_secure_clear(&df_ctx, sizeof(df_ctx));
gmssl_secure_clear(entropy, sizeof(entropy));
gmssl_secure_clear(seed, sizeof(seed));
return 1;
}
int sm4_rng_reseed(SM4_RNG *rng, const uint8_t *addin, size_t addin_len)
{
SM4_DF_CTX df_ctx;
uint8_t entropy[512];
uint8_t seed[32];
// get_entropy, 512-byte might be too long for some system RNGs
if (rand_bytes(entropy, 256) != 1
|| rand_bytes(entropy + 256, 256) != 1) {
error_print();
return -1;
}
// seed = sm4_df(entropy || addin)
sm4_df_init(&df_ctx, sizeof(entropy) + addin_len);
sm4_df_update(&df_ctx, entropy, sizeof(entropy));
sm4_df_update(&df_ctx, addin, addin_len);
sm4_df_finish(&df_ctx, seed);
sm4_rng_update(rng, seed);
rng->reseed_counter = 1;
rng->last_reseed_time = time(NULL);
gmssl_secure_clear(&df_ctx, sizeof(df_ctx));
gmssl_secure_clear(entropy, sizeof(entropy));
return 1;
}
#define SM4_RNG_MAX_RESEED_COUNTER (1<<20)
#define SM4_RNG_MAX_RESEED_SECONDS 600
int sm4_rng_generate(SM4_RNG *rng, const uint8_t *addin, size_t addin_len,
uint8_t *out, size_t outlen)
{
uint8_t seed[32] = {0};
SM4_KEY sm4_key;
if (!outlen || outlen > 16) {
error_print();
return -1;
}
if (rng->reseed_counter > SM4_RNG_MAX_RESEED_COUNTER
|| time(NULL) - rng->last_reseed_time > SM4_RNG_MAX_RESEED_SECONDS) {
if (sm4_rng_reseed(rng, addin, addin_len) != 1) {
error_print();
return -1;
}
if (addin) {
addin = NULL;
}
}
if (addin && addin_len) {
// seed = sm4_df(addin)
SM4_DF_CTX df_ctx;
sm4_df_init(&df_ctx, addin_len);
sm4_df_update(&df_ctx, addin, addin_len);
sm4_df_finish(&df_ctx, seed);
gmssl_secure_clear(&df_ctx, sizeof(df_ctx));
// rng_update(seed)
sm4_rng_update(rng, seed);
}
// V = (V + 1) mod 2^128
be_incr(rng->V);
// output sm4(K, V)[0:outlen]
sm4_set_encrypt_key(&sm4_key, rng->K);
if (outlen < 16) {
uint8_t buf[16];
sm4_encrypt(&sm4_key, rng->V, buf);
memcpy(out, buf, outlen);
} else {
sm4_encrypt(&sm4_key, rng->V, out);
}
// (K, V) = update(seed, (K, V))
sm4_rng_update(rng, seed);
// reseed_counter++
(rng->reseed_counter)++;
gmssl_secure_clear(seed, sizeof(seed));
gmssl_secure_clear(&sm4_key, sizeof(sm4_key));
return 1;
}