-
Notifications
You must be signed in to change notification settings - Fork 1
/
augmentation.py
356 lines (304 loc) · 16.5 KB
/
augmentation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
import numpy as np
from tqdm import tqdm
def jitter(x, y, sigma=0.03):
# https://arxiv.org/pdf/1706.00527.pdf
return x + np.random.normal(loc=0., scale=sigma, size=x.shape)
def scaling(x, y, sigma=0.1):
# https://arxiv.org/pdf/1706.00527.pdf
factor = np.random.normal(loc=1., scale=sigma, size=(x.shape[0],x.shape[2]))
return np.multiply(x, factor[:,np.newaxis,:])
def scaling_multi(x, y, sigma=0.03, mode="B"):
# Scaling for multivariate time series
# All the channels of a TS are multiplied by the same scale
B, TS, C = x.shape # Channels last
if mode == 'B':
scales = np.random.normal(loc=1., scale=sigma, size=(B))
return np.einsum("btc,b->btc", x, scales)
if mode == 'C':
scales = np.random.normal(loc=1., scale=sigma, size=(C))
return np.einsum("btc,c->btc", x, scales)
else:
raise NotImplementedError
def rotation(x, y):
flip = np.random.choice([-1, 1], size=(x.shape[0],x.shape[2]))
rotate_axis = np.arange(x.shape[2])
np.random.shuffle(rotate_axis)
return flip[:,np.newaxis,:] * x[:,:,rotate_axis]
def permutation(x, y, max_segments=5, seg_mode="equal"):
orig_steps = np.arange(x.shape[1])
num_segs = np.random.randint(1, max_segments, size=(x.shape[0]))
ret = np.zeros_like(x)
for i, pat in enumerate(x):
if num_segs[i] > 1:
if seg_mode == "random":
split_points = np.random.choice(x.shape[1]-2, num_segs[i]-1, replace=False)
split_points.sort()
splits = np.split(orig_steps, split_points)
else:
splits = np.array_split(orig_steps, num_segs[i])
warp = np.concatenate(np.random.permutation(splits)).ravel()
ret[i] = pat[warp]
else:
ret[i] = pat
return ret
def magnitude_warp(x, y, sigma=0.2, knot=4):
from scipy.interpolate import CubicSpline
orig_steps = np.arange(x.shape[1])
random_warps = np.random.normal(loc=1.0, scale=sigma, size=(x.shape[0], knot+2, x.shape[2]))
warp_steps = (np.ones((x.shape[2],1))*(np.linspace(0, x.shape[1]-1., num=knot+2))).T
ret = np.zeros_like(x)
for i, pat in enumerate(x):
warper = np.array([CubicSpline(warp_steps[:,dim], random_warps[i,:,dim])(orig_steps) for dim in range(x.shape[2])]).T
ret[i] = pat * warper
return ret
def time_warp(x, y, sigma=0.2, knot=4):
from scipy.interpolate import CubicSpline
orig_steps = np.arange(x.shape[1])
random_warps = np.random.normal(loc=1.0, scale=sigma, size=(x.shape[0], knot+2, x.shape[2]))
warp_steps = (np.ones((x.shape[2],1))*(np.linspace(0, x.shape[1]-1., num=knot+2))).T
ret = np.zeros_like(x)
for i, pat in enumerate(x):
for dim in range(x.shape[2]):
time_warp = CubicSpline(warp_steps[:,dim], warp_steps[:,dim] * random_warps[i,:,dim])(orig_steps)
scale = (x.shape[1]-1)/time_warp[-1]
ret[i,:,dim] = np.interp(orig_steps, np.clip(scale*time_warp, 0, x.shape[1]-1), pat[:,dim]).T
return ret
def window_slice(x, y, reduce_ratio=0.9):
# https://halshs.archives-ouvertes.fr/halshs-01357973/document
target_len = np.ceil(reduce_ratio*x.shape[1]).astype(int)
if target_len >= x.shape[1]:
return x
starts = np.random.randint(low=0, high=x.shape[1]-target_len, size=(x.shape[0])).astype(int)
ends = (target_len + starts).astype(int)
ret = np.zeros_like(x)
for i, pat in enumerate(x):
for dim in range(x.shape[2]):
ret[i,:,dim] = np.interp(np.linspace(0, target_len, num=x.shape[1]), np.arange(target_len), pat[starts[i]:ends[i],dim]).T
return ret
def window_warp(x, y, window_ratio=0.1, scales=[0.5, 2.]):
# https://halshs.archives-ouvertes.fr/halshs-01357973/document
warp_scales = np.random.choice(scales, x.shape[0])
warp_size = np.ceil(window_ratio*x.shape[1]).astype(int)
window_steps = np.arange(warp_size)
window_starts = np.random.randint(low=1, high=x.shape[1]-warp_size-1, size=(x.shape[0])).astype(int)
window_ends = (window_starts + warp_size).astype(int)
ret = np.zeros_like(x)
for i, pat in enumerate(x):
for dim in range(x.shape[2]):
start_seg = pat[:window_starts[i],dim]
window_seg = np.interp(np.linspace(0, warp_size-1, num=int(warp_size*warp_scales[i])), window_steps, pat[window_starts[i]:window_ends[i],dim])
end_seg = pat[window_ends[i]:,dim]
warped = np.concatenate((start_seg, window_seg, end_seg))
ret[i,:,dim] = np.interp(np.arange(x.shape[1]), np.linspace(0, x.shape[1]-1., num=warped.size), warped).T
return ret
def window_warp_multi(x, y, window_ratio=0.1, scales=[0.5, 2.], mode="B"):
# https://halshs.archives-ouvertes.fr/halshs-01357973/document
if mode == 'B':
B_SIZE, TS_LENGTH, C = x.shape
warp_scales = np.random.choice(scales, B_SIZE)
warp_size = np.ceil(window_ratio*TS_LENGTH).astype(int)
window_steps = np.arange(warp_size)
window_starts = np.random.randint(low=1, high=TS_LENGTH-warp_size-1, size=(B_SIZE)).astype(int)
window_ends = (window_starts + warp_size).astype(int)
ret = np.zeros_like(x)
for i, pat in enumerate(x):
for dim in range(C):
start_seg = pat[:window_starts[i], dim]
window_seg = np.interp(np.linspace(0, warp_size-1, num=int(warp_size*warp_scales[i])), window_steps, pat[window_starts[i]:window_ends[i],dim])
end_seg = pat[window_ends[i]:,dim]
warped = np.concatenate((start_seg, window_seg, end_seg))
ret[i,:,dim] = np.interp(np.arange(x.shape[1]), np.linspace(0, x.shape[1]-1., num=warped.size), warped).T
return ret
else:
raise NotImplementedError
def spawner(x, y, sigma=0.05, slope_constraint="symmetric", verbose=0):
# https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6983028/
# use verbose=-1 to turn off warnings
# use verbose=1 to print out figures
import utils.dtw as dtw
random_points = np.random.randint(low=1, high=x.shape[1]-1, size=x.shape[0])
window = np.ceil(x.shape[1] / 10.).astype(int)
orig_steps = np.arange(x.shape[1])
l = np.argmax(y, axis=1) if y.ndim > 1 else y
ret = np.zeros_like(x)
for i, pat in enumerate(tqdm(x)):
# guarentees that same one isnt selected
choices = np.delete(np.arange(x.shape[0]), i)
# remove ones of different classes
choices = np.where(l[choices] == l[i])[0]
if choices.size > 0:
random_sample = x[np.random.choice(choices)]
# SPAWNER splits the path into two randomly
path1 = dtw.dtw(pat[:random_points[i]], random_sample[:random_points[i]], dtw.RETURN_PATH, slope_constraint=slope_constraint, window=window)
path2 = dtw.dtw(pat[random_points[i]:], random_sample[random_points[i]:], dtw.RETURN_PATH, slope_constraint=slope_constraint, window=window)
combined = np.concatenate((np.vstack(path1), np.vstack(path2+random_points[i])), axis=1)
if verbose:
print(random_points[i])
dtw_value, cost, DTW_map, path = dtw.dtw(pat, random_sample, return_flag = dtw.RETURN_ALL, slope_constraint=slope_constraint, window=window)
dtw.draw_graph1d(cost, DTW_map, path, pat, random_sample)
dtw.draw_graph1d(cost, DTW_map, combined, pat, random_sample)
mean = np.mean([pat[combined[0]], random_sample[combined[1]]], axis=0)
for dim in range(x.shape[2]):
ret[i,:,dim] = np.interp(orig_steps, np.linspace(0, x.shape[1]-1., num=mean.shape[0]), mean[:,dim]).T
else:
if verbose > -1:
print("There is only one pattern of class %d, skipping pattern average"%l[i])
ret[i,:] = pat
return jitter(ret, sigma=sigma)
def wdba(x, y, batch_size=6, slope_constraint="symmetric", use_window=True, verbose=0):
# https://ieeexplore.ieee.org/document/8215569
# use verbose = -1 to turn off warnings
# slope_constraint is for DTW. "symmetric" or "asymmetric"
import utils.dtw as dtw
if use_window:
window = np.ceil(x.shape[1] / 10.).astype(int)
else:
window = None
orig_steps = np.arange(x.shape[1])
l = np.argmax(y, axis=1) if y.ndim > 1 else y
ret = np.zeros_like(x)
for i in tqdm(range(ret.shape[0])):
# get the same class as i
choices = np.where(l == l[i])[0]
if choices.size > 0:
# pick random intra-class pattern
k = min(choices.size, batch_size)
random_prototypes = x[np.random.choice(choices, k, replace=False)]
# calculate dtw between all
dtw_matrix = np.zeros((k, k))
for p, prototype in enumerate(random_prototypes):
for s, sample in enumerate(random_prototypes):
if p == s:
dtw_matrix[p, s] = 0.
else:
dtw_matrix[p, s] = dtw.dtw(prototype, sample, dtw.RETURN_VALUE, slope_constraint=slope_constraint, window=window)
# get medoid
medoid_id = np.argsort(np.sum(dtw_matrix, axis=1))[0]
nearest_order = np.argsort(dtw_matrix[medoid_id])
medoid_pattern = random_prototypes[medoid_id]
# start weighted DBA
average_pattern = np.zeros_like(medoid_pattern)
weighted_sums = np.zeros((medoid_pattern.shape[0]))
for nid in nearest_order:
if nid == medoid_id or dtw_matrix[medoid_id, nearest_order[1]] == 0.:
average_pattern += medoid_pattern
weighted_sums += np.ones_like(weighted_sums)
else:
path = dtw.dtw(medoid_pattern, random_prototypes[nid], dtw.RETURN_PATH, slope_constraint=slope_constraint, window=window)
dtw_value = dtw_matrix[medoid_id, nid]
warped = random_prototypes[nid, path[1]]
weight = np.exp(np.log(0.5)*dtw_value/dtw_matrix[medoid_id, nearest_order[1]])
average_pattern[path[0]] += weight * warped
weighted_sums[path[0]] += weight
ret[i,:] = average_pattern / weighted_sums[:,np.newaxis]
else:
if verbose > -1:
print("There is only one pattern of class %d, skipping pattern average"%l[i])
ret[i,:] = x[i]
return ret
# Proposed
def random_guided_warp(x, y, slope_constraint="symmetric", use_window=True, dtw_type="normal", verbose=0):
# use verbose = -1 to turn off warnings
# slope_constraint is for DTW. "symmetric" or "asymmetric"
# dtw_type is for shapeDTW or DTW. "normal" or "shape"
import utils.dtw as dtw
if use_window:
window = np.ceil(x.shape[1] / 10.).astype(int)
else:
window = None
orig_steps = np.arange(x.shape[1])
l = np.argmax(y, axis=1) if y.ndim > 1 else y
ret = np.zeros_like(x)
for i, pat in enumerate(tqdm(x)):
# guarentees that same one isnt selected
choices = np.delete(np.arange(x.shape[0]), i)
# remove ones of different classes
choices = np.where(l[choices] == l[i])[0]
if choices.size > 0:
# pick random intra-class pattern
random_prototype = x[np.random.choice(choices)]
if dtw_type == "shape":
path = dtw.shape_dtw(random_prototype, pat, dtw.RETURN_PATH, slope_constraint=slope_constraint, window=window)
else:
path = dtw.dtw(random_prototype, pat, dtw.RETURN_PATH, slope_constraint=slope_constraint, window=window)
# Time warp
warped = pat[path[1]]
for dim in range(x.shape[2]):
ret[i,:,dim] = np.interp(orig_steps, np.linspace(0, x.shape[1]-1., num=warped.shape[0]), warped[:,dim]).T
else:
if verbose > -1:
print("There is only one pattern of class %d, skipping timewarping"%l[i])
ret[i,:] = pat
return ret
def random_guided_warp_shape(x, y, slope_constraint="symmetric", use_window=True):
return random_guided_warp(x, y, slope_constraint, use_window, dtw_type="shape")
def discriminative_guided_warp(x, y, batch_size=6, slope_constraint="symmetric", use_window=True, dtw_type="normal", use_variable_slice=True, verbose=0):
# use verbose = -1 to turn off warnings
# slope_constraint is for DTW. "symmetric" or "asymmetric"
# dtw_type is for shapeDTW or DTW. "normal" or "shape"
import utils.dtw as dtw
if use_window:
window = np.ceil(x.shape[1] / 10.).astype(int)
else:
window = None
orig_steps = np.arange(x.shape[1])
l = np.argmax(y, axis=1) if y.ndim > 1 else y
positive_batch = np.ceil(batch_size / 2).astype(int)
negative_batch = np.floor(batch_size / 2).astype(int)
ret = np.zeros_like(x)
warp_amount = np.zeros(x.shape[0])
for i, pat in enumerate(tqdm(x)):
# guarentees that same one isnt selected
choices = np.delete(np.arange(x.shape[0]), i)
# remove ones of different classes
positive = np.where(l[choices] == l[i])[0]
negative = np.where(l[choices] != l[i])[0]
if positive.size > 0 and negative.size > 0:
pos_k = min(positive.size, positive_batch)
neg_k = min(negative.size, negative_batch)
positive_prototypes = x[np.random.choice(positive, pos_k, replace=False)]
negative_prototypes = x[np.random.choice(negative, neg_k, replace=False)]
# vector embedding and nearest prototype in one
pos_aves = np.zeros((pos_k))
neg_aves = np.zeros((pos_k))
if dtw_type == "shape":
for p, pos_prot in enumerate(positive_prototypes):
for ps, pos_samp in enumerate(positive_prototypes):
if p != ps:
pos_aves[p] += (1./(pos_k-1.))*dtw.shape_dtw(pos_prot, pos_samp, dtw.RETURN_VALUE, slope_constraint=slope_constraint, window=window)
for ns, neg_samp in enumerate(negative_prototypes):
neg_aves[p] += (1./neg_k)*dtw.shape_dtw(pos_prot, neg_samp, dtw.RETURN_VALUE, slope_constraint=slope_constraint, window=window)
selected_id = np.argmax(neg_aves - pos_aves)
path = dtw.shape_dtw(positive_prototypes[selected_id], pat, dtw.RETURN_PATH, slope_constraint=slope_constraint, window=window)
else:
for p, pos_prot in enumerate(positive_prototypes):
for ps, pos_samp in enumerate(positive_prototypes):
if p != ps:
pos_aves[p] += (1./(pos_k-1.))*dtw.dtw(pos_prot, pos_samp, dtw.RETURN_VALUE, slope_constraint=slope_constraint, window=window)
for ns, neg_samp in enumerate(negative_prototypes):
neg_aves[p] += (1./neg_k)*dtw.dtw(pos_prot, neg_samp, dtw.RETURN_VALUE, slope_constraint=slope_constraint, window=window)
selected_id = np.argmax(neg_aves - pos_aves)
path = dtw.dtw(positive_prototypes[selected_id], pat, dtw.RETURN_PATH, slope_constraint=slope_constraint, window=window)
# Time warp
warped = pat[path[1]]
warp_path_interp = np.interp(orig_steps, np.linspace(0, x.shape[1]-1., num=warped.shape[0]), path[1])
warp_amount[i] = np.sum(np.abs(orig_steps-warp_path_interp))
for dim in range(x.shape[2]):
ret[i,:,dim] = np.interp(orig_steps, np.linspace(0, x.shape[1]-1., num=warped.shape[0]), warped[:,dim]).T
else:
if verbose > -1:
print("There is only one pattern of class %d"%l[i])
ret[i,:] = pat
warp_amount[i] = 0.
if use_variable_slice:
max_warp = np.max(warp_amount)
if max_warp == 0:
# unchanged
ret = window_slice(ret, reduce_ratio=0.9)
else:
for i, pat in enumerate(ret):
# Variable Sllicing
ret[i] = window_slice(pat[np.newaxis,:,:], None, reduce_ratio=0.9+0.1*warp_amount[i]/max_warp)[0]
return ret
def discriminative_guided_warp_shape(x, y, batch_size=6, slope_constraint="symmetric", use_window=True):
return discriminative_guided_warp(x, y, batch_size, slope_constraint, use_window, dtw_type="shape")