-
Notifications
You must be signed in to change notification settings - Fork 1
/
Security.agda
128 lines (114 loc) · 5.63 KB
/
Security.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
module LabelExpr.Security where
open import Data.Nat
open import Data.Unit using (⊤; tt)
open import Data.Bool using (true; false) renaming (Bool to 𝔹)
open import Data.List hiding ([_])
open import Data.Product renaming (_,_ to ⟨_,_⟩)
open import Data.Sum using (_⊎_)
open import Data.Maybe
open import Relation.Nullary using (¬_; Dec; yes; no; recompute)
open import Relation.Nullary.Negation using (contradiction; ¬?)
open import Relation.Binary.PropositionalEquality using (_≡_; _≢_; refl; cong; sym; subst)
open import Function using (case_of_)
open import Common.Utils
open import Common.SecurityLabels
open import Common.BlameLabels
open import CoercionExpr.CoercionExpr
renaming (_∎ to _∎ₗ ; _—→⟨_⟩_ to _—→ₗ⟨_⟩_)
hiding (Progress; progress; plug-cong; ↠-trans)
open import CoercionExpr.SyntacComp
open import CoercionExpr.Precision renaming (prec→⊑ to precₗ→⊑)
open import CoercionExpr.SecurityLevel renaming (∥_∥ to ∥_∥ₗ)
open import CoercionExpr.Stamping
open import LabelExpr.LabelExpr
open import LabelExpr.Stamping
security-eqₑ : ∀ {V₁ V₂}
→ (v₁ : LVal V₁)
→ (v₂ : LVal V₂)
→ V₁ ≡ V₂
--------------------------
→ ∥ V₁ ∥ v₁ ≡ ∥ V₂ ∥ v₂
security-eqₑ v₁ v₂ eq rewrite eq rewrite uniq-LVal v₁ v₂ = refl
stampₑ-security : ∀ {V ℓ} (v : LVal V) → (∥ V ∥ v) ⋎ ℓ ≡ ∥ stampₑ V v ℓ ∥ (stampₑ-LVal v)
stampₑ-security {V = l ℓ} {ℓ = low} v-l rewrite ℓ⋎low≡ℓ {ℓ} = refl
stampₑ-security {V = l low} {ℓ = high} v-l = refl
stampₑ-security {V = l high} {ℓ = high} v-l = refl
stampₑ-security {V} {low} (v-cast (ir 𝓋 _)) = stampₗ-security _ 𝓋 low
stampₑ-security {V} {high} (v-cast (ir 𝓋 _)) = stampₗ-security _ 𝓋 high
stamp!ₑ-security : ∀ {V ℓ} (v : LVal V) → (∥ V ∥ v) ⋎ ℓ ≡ ∥ stamp!ₑ V v ℓ ∥ (stamp!ₑ-LVal v)
stamp!ₑ-security {V} {low} (v-l {ℓ}) rewrite ℓ⋎low≡ℓ {ℓ} = refl
stamp!ₑ-security {V} {high} v-l = stamp!ₗ-security _ id high
stamp!ₑ-security {V} {ℓ} (v-cast (ir v _)) = stamp!ₗ-security _ v ℓ
cast-security : ∀ {g g′ V V′} {c̅ : CExpr g ⇒ g′}
→ (v : LVal V)
→ ⊢ V ⇐ g
→ V ⟪ c̅ ⟫ —↠ₑ V′
→ (v′ : LVal V′)
-------------------------
→ ∥ V ∥ v ≼ ∥ V′ ∥ v′
cast-security v-l ⊢V (l _ ⟪ id (l _) ⟫ —→⟨ β-id ⟩ _ ∎) v-l = ≼-refl
cast-security v-l ⊢V (l _ ⟪ _ ⟫ —→⟨ cast c̅→⁺c̅ₙ 𝓋 ⟩ ↠V′) v-l =
cast-security v-l ⊢l ↠V′ v-l
cast-security v-l ⊢V (l _ ⟪ _ ⟫ —→⟨ blame _ ⟩ _ —→⟨ r ⟩ _) v-l =
contradiction r (LResult⌿→ fail)
cast-security v-l ⊢V ↠V′ (v-cast (ir id x)) = contradiction refl (recompute (¬? (_ ==? _)) x)
cast-security v-l ⊢l ↠V′ (v-cast (ir (inj id) _))
with preserve-mult (⊢cast ⊢l) ↠V′
... | ⊢cast ⊢l with cast-red-label-eq ↠V′
... | refl = ≡→≼ refl
cast-security v-l ⊢V ↠V′ (v-cast (ir (inj (up id)) x₁)) = _ ≼high
cast-security v-l ⊢l ↠V′ (v-cast (ir (up id) x)) = _ ≼high
cast-security (v-cast i) ⊢V (_ —→⟨ ξ ℓ⟨c̅⟩→N ⟩ _) v-l =
contradiction ℓ⟨c̅⟩→N (LVal⌿→ (v-cast i))
cast-security (v-cast (ir v _)) (⊢cast ⊢l) (_ —→⟨ comp i† ⟩ r) v-l
with cast-to-label-inv r | preserve-mult (⊢cast ⊢l) r
... | ⟨ refl , r* ⟩ | ⊢l =
let comp-red = cast-red-inv r* in
comp-security v comp-red id
cast-security (v-cast i) ⊢V
(l _ ⟪ _ ⟫ ⟪ _ ⟫ —→⟨ ξ ℓ⟨c⟩→N ⟩ ↠V′) (v-cast _) =
contradiction ℓ⟨c⟩→N (LVal⌿→ (v-cast i))
cast-security (v-cast (ir 𝓋 _)) ⊢V
(l _ ⟪ _ ⟫ ⟪ _ ⟫ —→⟨ comp i ⟩ ↠V′) (v-cast (ir 𝓋′ _))
with preserve-mult (⊢cast ⊢l) ↠V′
... | ⊢cast ⊢l with cast-red-label-eq ↠V′
... | refl = comp-security 𝓋 (cast-red-inv ↠V′) 𝓋′
stamp-cast-security : ∀ {g g′ ℓ V V′} {c̅ : CExpr (g ⋎̃ l ℓ) ⇒ g′}
→ (v : LVal V)
→ ⊢ V ⇐ g
→ stampₑ V v ℓ ⟪ c̅ ⟫ —↠ₑ V′
→ (v′ : LVal V′)
---------------------------------
→ (∥ V ∥ v) ⋎ ℓ ≼ ∥ V′ ∥ v′
stamp-cast-security {ℓ = ℓ} v ⊢V ↠V′ v′ =
let eq = stampₑ-security {ℓ = ℓ} v in
let leq = cast-security (stampₑ-LVal v) (stampₑ-wt v ⊢V) ↠V′ v′ in
≼-trans (≡→≼ eq) leq
stamp!-cast-security : ∀ {g g′ ℓ V V′} {c̅ : CExpr ⋆ ⇒ g′}
→ (v : LVal V)
→ ⊢ V ⇐ g
→ stamp!ₑ V v ℓ ⟪ c̅ ⟫ —↠ₑ V′
→ (v′ : LVal V′)
---------------------------------
→ (∥ V ∥ v) ⋎ ℓ ≼ ∥ V′ ∥ v′
stamp!-cast-security {g} {g′} {ℓ} {V} {V′} {c̅} v ⊢V ↠V′ v′ =
let eq = stamp!ₑ-security {ℓ = ℓ} v in
let leq = cast-security (stamp!ₑ-LVal v) (stamp!ₑ-wt v ⊢V) ↠V′ v′ in
≼-trans (≡→≼ eq) leq
security-prec-mono : ∀ {g g′} {V W}
→ (v : LVal V)
→ (w : LVal W)
→ ⊢ V ⊑ W ⇐ g ⊑ g′
-----------------------------------
→ ∥ V ∥ v ≼ ∥ W ∥ w
security-prec-mono v-l v-l ⊑-l = ≼-refl
security-prec-mono v-l (v-cast (ir 𝓋′ _)) (⊑-castr ⊑-l ℓ⊑c̅′) =
≡→≼ (security-prec-right _ 𝓋′ ℓ⊑c̅′)
security-prec-mono (v-cast (ir 𝓋 _)) v-l (⊑-castl ⊑-l c̅⊑ℓ′) =
≡→≼ (security-prec-left _ 𝓋 c̅⊑ℓ′)
security-prec-mono (v-cast (ir 𝓋 _)) (v-cast (ir 𝓋′ _)) V⊑W
with prec→⊢ V⊑W
... | ⟨ ⊢cast ⊢l , ⊢cast ⊢l ⟩
with prec-inv V⊑W
... | ⟨ refl , c̅⊑c̅′ ⟩ =
security-prec _ _ 𝓋 𝓋′ c̅⊑c̅′