This repository is the official implementation of the following paper
Xiyuan Wang, Muhan Zhang: Graph Neural Network With Local Frame for Molecular Potential Energy Surface. LoG 2022.
@inproceedings{GNNLF,
author = {Xiyuan Wang and
Muhan Zhang},
editor = {Bastian Rieck and
Razvan Pascanu},
title = {Graph Neural Network With Local Frame for Molecular Potential Energy
Surface},
booktitle = {Learning on Graphs Conference, LoG 2022, 9-12 December 2022, Virtual
Event},
series = {Proceedings of Machine Learning Research},
volume = {198},
pages = {19},
publisher = {{PMLR}},
year = {2022}
}
Tested combination: Python 3.9.6 + PyTorch 1.11.0
Other required python libraries include: numpy, scikit-learn, optuna, torch_geometric, etc.
We write a script for preparing datasets.
python prepare_dataset.py
To reproduce results of the benzene molecule.
python main_md17.py --dataset benzene --test
"benzene" can be replaced with other molecules: benzene, uracil, naphthalene, aspirin, salicylic_acid, malonaldehyde, ethanol, toluene
To do ablation analysis.
NoDir2
python main_md17.py --nodir2 --dataset benzene --test
NoDir3
python main_md17.py --nodir3 --dataset benzene --test
Global
python main_md17.py --global_frame --dataset benzene --test
NoDecomp
python main_md17.py --no_filter_decomp --dataset benzene --test
NoShare
python main_md17.py --no_share_filter --dataset benzene --test
To reproduce results of the homo target
python main_qm9.py --dataset homo --test
"homo" can be replaced with other targets: dipole_moment, isotropic_polarizability, homo, lumo, gap, electronic_spatial_extent, zpve, energy_U0, energy_U, enthalpy_H, free_energy, heat_capacity