Bailey–Borwein–Plouffe Algorithm $$ π=\frac{1}{4}\underset{n=0}{\overset{\infty }{\sum }}\frac{1}{16^n} \left(\frac{16}{8 n+1}-\frac{8}{8 n+4}-\frac{4}{8 n+5}-\frac{4}{8 n+6}\right) $$ Bailey–Borwein–Plouffe Algorithm(8bit) $$ π=\frac{1}{64}\underset{n=0}{\overset{\infty }{\sum}}\frac{1}{256^n} \left(\frac{256}{16 n+1}-\frac{128}{16 n+4}-\frac{64}{16 n+5}-\frac{64}{16 n+6}+\frac{16}{16 n+9}-\frac{8}{16 n+12}-\frac{4}{16 n+13}-\frac{4}{16 n+14}\right) $$ Bailey–Borwein–Plouffe Algorithm(16bit) Chudnovsky Algorithm $$ \displaystyle \pi=\frac{426880 \sqrt{10005}}{13591409-\displaystyle\sum _{k=1}^{\infty } \frac{\displaystyle\prod _{j=1}^k \frac{72 j^3-108 j^2+46 j-5}{10939058860032000 j^3}}{545140134 k+13591409}} $$