forked from AiRyunn/dgl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfeatgen.py
executable file
·78 lines (58 loc) · 2.25 KB
/
featgen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
# This file is copied from the author's implementation.
# <https://github.com/RexYing/gnn-model-explainer/blob/master/utils/featgen.py>.
""" featgen.py
Node feature generators.
"""
import networkx as nx
import numpy as np
import random
import abc
class FeatureGen(metaclass=abc.ABCMeta):
"""Feature Generator base class."""
@abc.abstractmethod
def gen_node_features(self, G):
pass
class ConstFeatureGen(FeatureGen):
"""Constant Feature class."""
def __init__(self, val):
self.val = val
def gen_node_features(self, G):
feat_dict = {i:{'feat': np.array(self.val, dtype=np.float32)} for i in G.nodes()}
print ('feat_dict[0]["feat"]:', feat_dict[0]['feat'].dtype)
nx.set_node_attributes(G, feat_dict)
print ('G.nodes[0]["feat"]:', G.nodes[0]['feat'].dtype)
class GaussianFeatureGen(FeatureGen):
"""Gaussian Feature class."""
def __init__(self, mu, sigma):
self.mu = mu
if sigma.ndim < 2:
self.sigma = np.diag(sigma)
else:
self.sigma = sigma
def gen_node_features(self, G):
feat = np.random.multivariate_normal(self.mu, self.sigma, G.number_of_nodes())
feat_dict = {
i: {"feat": feat[i]} for i in range(feat.shape[0])
}
nx.set_node_attributes(G, feat_dict)
class GridFeatureGen(FeatureGen):
"""Grid Feature class."""
def __init__(self, mu, sigma, com_choices):
self.mu = mu # Mean
self.sigma = sigma # Variance
self.com_choices = com_choices # List of possible community labels
def gen_node_features(self, G):
# Generate community assignment
community_dict = {
n: self.com_choices[0] if G.degree(n) < 4 else self.com_choices[1]
for n in G.nodes()
}
# Generate random variable
s = np.random.normal(self.mu, self.sigma, G.number_of_nodes())
# Generate features
feat_dict = {
n: {"feat": np.asarray([community_dict[n], s[i]])}
for i, n in enumerate(G.nodes())
}
nx.set_node_attributes(G, feat_dict)
return community_dict