forked from AiRyunn/dgl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
58 lines (41 loc) · 1.59 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import torch as th
import torch.nn as nn
import torch.nn.functional as F
import dgl
import dgl.function as fn
class dummy_layer(nn.Module):
def __init__(self, in_dim, out_dim):
super(dummy_layer, self).__init__()
self.layer = nn.Linear(in_dim * 2, out_dim, bias=True)
def forward(self, graph, n_feats, e_weights=None):
graph.ndata['h'] = n_feats
if e_weights == None:
graph.update_all(fn.copy_u('h', 'm'), fn.mean('m', 'h'))
else:
graph.edata['ew'] = e_weights
graph.update_all(fn.u_mul_e('h', 'ew', 'm'), fn.mean('m', 'h'))
graph.ndata['h'] = self.layer(th.cat([graph.ndata['h'], n_feats], dim=-1))
output = graph.ndata['h']
return output
class dummy_gnn_model(nn.Module):
"""
A dummy gnn model, which is same as graph sage, but could adopt edge mask in forward
"""
def __init__(self,
in_dim,
hid_dim,
out_dim):
super(dummy_gnn_model, self).__init__()
self.in_dim = in_dim
self.hid_dim = hid_dim
self.out_dim = out_dim
self.in_layer = dummy_layer(self.in_dim, self.hid_dim)
self.hid_layer = dummy_layer(self.hid_dim, self.hid_dim)
self.out_layer = dummy_layer(self.hid_dim, self.out_dim)
def forward(self, graph, n_feat, edge_weights=None):
h = self.in_layer(graph, n_feat, edge_weights)
h = F.relu(h)
h = self.hid_layer(graph, h, edge_weights)
h = F.relu(h)
h = self.out_layer(graph, h, edge_weights)
return h