forked from AiRyunn/dgl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
180 lines (157 loc) · 5.92 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
"""
Graph Representation Learning via Hard Attention Networks in DGL using Adam optimization.
References
----------
Paper: https://arxiv.org/abs/1907.04652
"""
import argparse
import numpy as np
import time
import torch
import torch.nn.functional as F
import dgl
from dgl.data import register_data_args
from dgl.data import CoraGraphDataset, CiteseerGraphDataset, PubmedGraphDataset
from hgao import HardGAT
from utils import EarlyStopping
def accuracy(logits, labels):
_, indices = torch.max(logits, dim=1)
correct = torch.sum(indices == labels)
return correct.item() * 1.0 / len(labels)
def evaluate(model, features, labels, mask):
model.eval()
with torch.no_grad():
logits = model(features)
logits = logits[mask]
labels = labels[mask]
return accuracy(logits, labels)
def main(args):
# load and preprocess dataset
if args.dataset == 'cora':
data = CoraGraphDataset()
elif args.dataset == 'citeseer':
data = CiteseerGraphDataset()
elif args.dataset == 'pubmed':
data = PubmedGraphDataset()
else:
raise ValueError('Unknown dataset: {}'.format(args.dataset))
if args.num_layers <=0:
raise ValueError("num layer must be positive int")
g = data[0]
if args.gpu < 0:
cuda = False
else:
cuda = True
g = g.to(args.gpu)
features = g.ndata['feat']
labels = g.ndata['label']
train_mask = g.ndata['train_mask']
val_mask = g.ndata['val_mask']
test_mask = g.ndata['test_mask']
num_feats = features.shape[1]
n_classes = data.num_labels
n_edges = data.graph.number_of_edges()
print("""----Data statistics------'
#Edges %d
#Classes %d
#Train samples %d
#Val samples %d
#Test samples %d""" %
(n_edges, n_classes,
train_mask.int().sum().item(),
val_mask.int().sum().item(),
test_mask.int().sum().item()))
# add self loop
g = dgl.remove_self_loop(g)
g = dgl.add_self_loop(g)
n_edges = g.number_of_edges()
# create model
heads = ([args.num_heads] * args.num_layers) + [args.num_out_heads]
model = HardGAT(g,
args.num_layers,
num_feats,
args.num_hidden,
n_classes,
heads,
F.elu,
args.in_drop,
args.attn_drop,
args.negative_slope,
args.residual,
args.k)
print(model)
if args.early_stop:
stopper = EarlyStopping(patience=100)
if cuda:
model.cuda()
loss_fcn = torch.nn.CrossEntropyLoss()
# use optimizer
optimizer = torch.optim.Adam(
model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
# initialize graph
dur = []
for epoch in range(args.epochs):
model.train()
if epoch >= 3:
t0 = time.time()
# forward
logits = model(features)
loss = loss_fcn(logits[train_mask], labels[train_mask])
optimizer.zero_grad()
loss.backward()
optimizer.step()
if epoch >= 3:
dur.append(time.time() - t0)
train_acc = accuracy(logits[train_mask], labels[train_mask])
if args.fastmode:
val_acc = accuracy(logits[val_mask], labels[val_mask])
else:
val_acc = evaluate(model, features, labels, val_mask)
if args.early_stop:
if stopper.step(val_acc, model):
break
print("Epoch {:05d} | Time(s) {:.4f} | Loss {:.4f} | TrainAcc {:.4f} |"
" ValAcc {:.4f} | ETputs(KTEPS) {:.2f}".
format(epoch, np.mean(dur), loss.item(), train_acc,
val_acc, n_edges / np.mean(dur) / 1000))
print()
if args.early_stop:
model.load_state_dict(torch.load('es_checkpoint.pt'))
acc = evaluate(model, features, labels, test_mask)
print("Test Accuracy {:.4f}".format(acc))
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='GAT')
register_data_args(parser)
parser.add_argument("--gpu", type=int, default=-1,
help="which GPU to use. Set -1 to use CPU.")
parser.add_argument("--epochs", type=int, default=200,
help="number of training epochs")
parser.add_argument("--num-heads", type=int, default=8,
help="number of hidden attention heads")
parser.add_argument("--num-out-heads", type=int, default=1,
help="number of output attention heads")
parser.add_argument("--num-layers", type=int, default=1,
help="number of hidden layers")
parser.add_argument("--num-hidden", type=int, default=8,
help="number of hidden units")
parser.add_argument("--residual", action="store_true", default=False,
help="use residual connection")
parser.add_argument("--in-drop", type=float, default=.6,
help="input feature dropout")
parser.add_argument("--attn-drop", type=float, default=.6,
help="attention dropout")
parser.add_argument("--lr", type=float, default=0.01,
help="learning rate")
parser.add_argument('--weight-decay', type=float, default=5e-4,
help="weight decay")
parser.add_argument('--negative-slope', type=float, default=0.2,
help="the negative slope of leaky relu")
parser.add_argument('--early-stop', action='store_true', default=False,
help="indicates whether to use early stop or not")
parser.add_argument('--fastmode', action="store_true", default=False,
help="skip re-evaluate the validation set")
parser.add_argument('--k',type=int,default=8,
help='top k neighor for attention calculation')
args = parser.parse_args()
print(args)
main(args)