-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdemo.py.txt
134 lines (113 loc) · 5.01 KB
/
demo.py.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
from __future__ import division
import cv2
#to show the image
from matplotlib import pyplot as plt
import numpy as np
from math import cos, sin
green = (0, 255, 0)
def show(image):
# Figure size in inches
plt.figure(figsize=(10, 10))
# Show image, with nearest neighbour interpolation
plt.imshow(image, interpolation='nearest')
def overlay_mask(mask, image):
#make the mask rgb
rgb_mask = cv2.cvtColor(mask, cv2.COLOR_GRAY2RGB)
#calculates the weightes sum of two arrays. in our case image arrays
#input, how much to weight each.
#optional depth value set to 0 no need
img = cv2.addWeighted(rgb_mask, 0.5, image, 0.5, 0)
return img
def find_biggest_contour(image):
# Copy
image = image.copy()
#input, gives all the contours, contour approximation compresses horizontal,
#vertical, and diagonal segments and leaves only their end points. For example,
#an up-right rectangular contour is encoded with 4 points.
#Optional output vector, containing information about the image topology.
#It has as many elements as the number of contours.
#we dont need it
contours, hierarchy = cv2.findContours(image, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
# Isolate largest contour
contour_sizes = [(cv2.contourArea(contour), contour) for contour in contours]
biggest_contour = max(contour_sizes, key=lambda x: x[0])[1]
mask = np.zeros(image.shape, np.uint8)
cv2.drawContours(mask, [biggest_contour], -1, 255, -1)
return biggest_contour, mask
def circle_contour(image, contour):
# Bounding ellipse
image_with_ellipse = image.copy()
#easy function
ellipse = cv2.fitEllipse(contour)
#add it
cv2.ellipse(image_with_ellipse, ellipse, green, 2, cv2.CV_AA)
return image_with_ellipse
def find_strawberry(image):
#RGB stands for Red Green Blue. Most often, an RGB color is stored
#in a structure or unsigned integer with Blue occupying the least
#significant “area” (a byte in 32-bit and 24-bit formats), Green the
#second least, and Red the third least. BGR is the same, except the
#order of areas is reversed. Red occupies the least significant area,
# Green the second (still), and Blue the third.
# we'll be manipulating pixels directly
#most compatible for the transofrmations we're about to do
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# Make a consistent size
#get largest dimension
max_dimension = max(image.shape)
#The maximum window size is 700 by 660 pixels. make it fit in that
scale = 700/max_dimension
#resize it. same width and hieght none since output is 'image'.
image = cv2.resize(image, None, fx=scale, fy=scale)
#we want to eliminate noise from our image. clean. smooth colors without
#dots
# Blurs an image using a Gaussian filter. input, kernel size, how much to filter, empty)
image_blur = cv2.GaussianBlur(image, (7, 7), 0)
#t unlike RGB, HSV separates luma, or the image intensity, from
# chroma or the color information.
#just want to focus on color, segmentation
image_blur_hsv = cv2.cvtColor(image_blur, cv2.COLOR_RGB2HSV)
# Filter by colour
# 0-10 hue
#minimum red amount, max red amount
min_red = np.array([0, 100, 80])
max_red = np.array([10, 256, 256])
#layer
mask1 = cv2.inRange(image_blur_hsv, min_red, max_red)
#birghtness of a color is hue
# 170-180 hue
min_red2 = np.array([170, 100, 80])
max_red2 = np.array([180, 256, 256])
mask2 = cv2.inRange(image_blur_hsv, min_red2, max_red2)
#looking for what is in both ranges
# Combine masks
mask = mask1 + mask2
# Clean up
#we want to circle our strawberry so we'll circle it with an ellipse
#with a shape of 15x15
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (15, 15))
#morph the image. closing operation Dilation followed by Erosion.
#It is useful in closing small holes inside the foreground objects,
#or small black points on the object.
mask_closed = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel)
#erosion followed by dilation. It is useful in removing noise
mask_clean = cv2.morphologyEx(mask_closed, cv2.MORPH_OPEN, kernel)
# Find biggest strawberry
#get back list of segmented strawberries and an outline for the biggest one
big_strawberry_contour, mask_strawberries = find_biggest_contour(mask_clean)
# Overlay cleaned mask on image
# overlay mask on image, strawberry now segmented
overlay = overlay_mask(mask_clean, image)
# Circle biggest strawberry
#circle the biggest one
circled = circle_contour(overlay, big_strawberry_contour)
show(circled)
#we're done, convert back to original color scheme
bgr = cv2.cvtColor(circled, cv2.COLOR_RGB2BGR)
return bgr
#read the image
image = cv2.imread('yo.jpg')
#detect it
result = find_strawberry(image)
#write the new image
cv2.imwrite('yo2.jpg', result)S