-
Notifications
You must be signed in to change notification settings - Fork 0
/
run.jl
25 lines (18 loc) · 794 Bytes
/
run.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
using LSM
using Random # For setting the seed
using MNIST # For loading the MNIST dataset
# Set the random seed for reproducibility
Random.seed!(1234)
# Initialize the components of the LSM
reservoir_neurons = [Reservoir.Neuron(rand(), 1.0) for _ in 1:100] # Example initialization
read_in = ReadIn.adapt_dataset
read_out = ReadOut.Perceptron(randn(100), 0.0, softmax) # Example initialization
# Create the LSM
lsm = LSM.LiquidStateMachine(reservoir_neurons, read_in, read_out)
# Load and preprocess the MNIST dataset
data, labels = MNIST.traindata()
# Preprocess data - this is a placeholder
# Normally, you would resize or transform the data to match the LSM's input requirements
# Train the LSM
LSM.run_lsm(lsm, data, labels)
# Additional logic for testing and evaluating the LSM