
GUMTREE DECODED 

T. Lam, N Xiong, P. Hathaway, N. Hauser, ANSTO, Sydney, Australia 

Abstract 
During the construction of 8 new Australian neutron 

beam instruments, the software team from Bragg Institute 

(ANSTO) has developed a novel software system, 

codename GumTree, which unifies data acquisition and 

analysis under a single user application.  GumTree is a 

Java-based system that builds on Spring, OSGi and 

Eclipse RCP framework.  It provides many application 

building blocks for creating different kinds of scientific 

applications, including control system connector, data 

processing engine, reduction algorithm libraries, OpenGL 

data visualisation toolkit, workflow support and script 

engine connectivity (cPython, JavaScript, etc).  With tight 

integration of above components, users can script and 

plan their experiments in an interactive way, and let 

GumTree automates the experiment based on the 

automatically analysed raw results.  The main benefit of 

this approach is to increase the effective use of 

instrument, saving instrument time and cost for long 

running experiments.  GumTree system can run as either 

desktop application or middleware server mode.  The 

simplified web client version that uses Adobe Flex and 

AJAX are also under development. 

I. CONCEPT 

What is GumTree 

GumTree is an enabling software technology for 

supporting various kind of neutron scattering 

experiments.  It covers instrument control, experiment 

planning, live data reduction and simple data analysis in 

the desktop client area; web status monitoring, data 

management and database connectivity in the server side 

area.  The GumTree project is originally funded by the 

Australian Nuclear Science and Technology Organisation 

(ANSTO), as part of the neutron beam instrument project 

for constructing eight new state-of-the-art instruments. 

Project Approach 

The direction of the GumTree project is driven by ful-

filling the needs of the project’s stakeholders: 

• Instrument Users - The main part of this project is 

to provide an integrated scientific workbench to 

centralise everything that an instrument user will 

need during their experiment.  The design of the 

workbench is catered for novice and expert users.  

This is achieved by providing guided visual 

assistance for inexperienced users and powerful in-

application scripting capability for users with great 

confidence. 

• Software Developers - GumTree is designed to be 

customisable and extensible.  Each GumTree based 

application runs on top of a small dynamic runtime 

platform, named OSGi, with the choice of a number 

of reusable components.  Developers only need to 

configure the platform and write a small portion of 

customised code for their instruments. 

• Facility Operators – We have planed to support 

facility operators in the area of data management and 

system monitor by providing a number of add-on 

components that will run on top of the GumTree 

platform. 

Open Source Technology 

GumTree is built on the foundation of a number of Java 

based open source technologies.  There are small part of 

the system that is written in Python script and other JVM 

supported scripting languages.  The core of GumTree is a 

micro-kernel that runs on top of the Equinox OSGi 

runtime [1].  OSGi is a small Java based application 

container that allows part of the Java code to be installed 

or unloaded dynamically at runtime.  The GumTree 

runtime kernel is also hybridised with the Spring 

Dynamic Module (DM) dependency injection container 

for supporting application configuration via XML. 

The desktop side of GumTree is created with Eclipse 

Rich Client Platform (RCP) technology.  Eclipse RCP 

provides many useful API (such as docking window, 

abstract file system, help system and data binding) and 

extensions (XML editing support, remote system 

communication and graphical editing framework) to help 

developers to create high level and professional looking 

applications.  Many Eclipse extensions are freely 

available to the open source community, but some 

extensions like Mathematica and IDL workbench are 

proprietary software.  GumTree is designed to support as 

much Eclipse extensions as possible, for example, 

GumTree can mix with IDL to create a vanilla data 

analysis application. 

 

Table 1: Leveraged open source technologies in GumTree 

Component Technologies 

Platform Runtime Java, Equinox OSGi, Spring DM 

Windowing Toolkit SWT 

Visualisation JFreeChart, OpenGL 

Data Format netCDF, HDF 

Web Communication Restlet, Jetty 

Persistence Db4o 

Logging SLF4J, Log4J 

XML Processing xStream, dom4j 

Code Generation EMF-SDO 

 



II. APPLICATION 

GumTree Workbench 

At the initial construction phase of the neutron beam 

instrument project, we have made two important 

decisions on our software system [2]: 

1. All instruments, if possible, should be standardised 

on common hardware, drivers and software choice. 

2. Instrument software stack will adopt the client-

server model. 

On the server side, the Swiss SICS control system from 

Paul Scherrer Institut (PSI) has been chosen as the 

common instrument control system, leaving the client 

side to be an in-house development effort.  At the 

beginning of 2004, Andy Götz, the co-founder of TACO 

and TANGO, has visited Australia to started a new 

Eclipse RCP based desktop project, codename GumTree, 

to be the graphical front-end for ANSTO's SICS server.  

Over the years, GumTree has evolved from a simple 

instrument control program to an integrated scientific 

workbench, with the ability to automate experiment and 

data reduction process. 

Instrument Control 

GumTree provides two type of access to the SICS 

control system: direct command via socket and treepath 

based control [3].  The latter one, also known as 

Hipadaba, supports the object oriented way of instrument 

control in SICS.  The underlying protocol is wrapped in 

JSON format, which is a light weight data format 

compares to XML.  Through Hipadaba, GumTree can 

create a variety of graphical components, like table tree, 

text box and synoptic widget, to drive and display 

instrument state.  The transfer of the tree structure is done 

via the Service Data Object (SDO) [4], which is 

implemented with Eclipse Modeling Framework (EMF). 

GumTree does not limit to SICS.  Early experimental 

work has been done to demonstrate the possibility to 

support different control systems, such as TANGO and 

EPICS, via their Java client APIs. 

Integrated Experiment Environment 

Many modern day desktop applications come with 

advanced windowing system for managing user interface 

in a clean and centralised way.  As more and more 

graphical user interface components are developed during 

the project, we saw the need of using an application 

framework that can provide a sophisticated windowing 

system.  The Eclipse Rich Client Platform (RCP) was 

almost the only choice we have at that time [5].  Due to 

the power of Eclipse RCP, we expanded our vision of 

GumTree to more than just a control system front-end.  

Since then we introduced a concept called integrated 

experiment environment, where any thing to do with 

neutron beam experiment (such as instrument control, 

monitoring, data file viewing, data file access database 

connection, report generation, note editing) can be done 

within a single application [6].  As the result, each 

component can interoperate and share data easily because 

they live on a single process. 

 

 

Figure 1: GumTree Workbench 

 

Scripting 

Scripting ability was one of the most wanted features 

requested by our expert users.  It was a technical 

challenge for GumTree until the release of Java 6, where 

Sun Microsystem has introduced the dynamic scripting 

API (JSR-223) on top of the Java virtual machine.  With 

this scripting API, users can call and automate any 

functionality available in GumTree at runtime, such as 

instrument control and workbench manipulation.  In 

particular, we have chosen cPython as our scripting 

language to GumTree via JEPP, so that we can leverage a 

large number of numerical and scientific libraries from 

the community. 

Since GumTree is based on Eclipse, this makes 

GumTree as a primary platform for editing scripts.  For 

example, we embed PyDev, one of the open source 

Python development tools available to Eclipse, for editing 

Python scripts.  Eclipse RCP also comes with API for 

managing files and code completion.  There is very little 

work we need to support scripting in GumTree. 

Workflow 

Workflow is a very common concept for performing a 

very complex task by composing a series of well defined 

small tasks.  UNIX pipeline, BPEL business process, 

Yahoo! Pipes and Mac OSX Automator are good 

examples of workflow.  This concept was discussed 

within the context of Web 2.0 [7], as an important 

technique for service mashup (application hybrid). 

GumTree provides various workflow task blocks for 

instrument control, data manipulation, and workbench 

control.  Users can visually mix and compose those task 

blocks in a workflow for creating their own GumTree 

automation script. 



 

Figure 2: GumTree Workflow 

 

Data Analysis 

Data analysis is the most sophisticated part within 

GumTree.  The data analysis capability was driven by the 

need of reducing and analysing live data during the user 

experiment.  This provides instant feedback on the quality 

of their data and provides information to adjust their 

experiment strategies if necessary.  Neutron scattering 

experiments usually require hours for data collection, so 

this feedback technique could save time and money 

because neutron beam time is generally expensive. 

The data analysis respect of GumTree is built upon the 

following foundation blocks: 

• GumTree Numeric – a Java based numeric and data 

format library 

• Kuranda visualisation toolkit – an SWT OpenGL 

based 1D/2D data plotting library 

• Cicada processing framework – a processor based 

data analysis engine.  It can be extended for data 

acquisition and simulation [8]. 

• Kakadu data analysis suite – a graphical front-end 

for the Cicada framework.  It supports auto GUI 

generation based on the content provided by Cicada. 

GumTree Server 

GumTree server is the headless version of GumTree 

(normal GumTree application without user interface 

components), with embedded HTTP server and 

communication protocol component equipped.  It serves 

as a middleware layer between client and instrument 

control system for monitoring and remote access, using   

HTTP ReSTful web services [9].  Control system 

information can then be accessible via normal web 

browser or Rich Internet Application (RIA) such as 

Adobe Flex or AJAX.  For all SICS controlled neutron 

instruments at ANSTO, we have developed flex clients to 

display live data and instrument status. 

III. PROGRAMMING MODEL 

Architectural Style 

GumTree has a distinguish architecture under the 

influence of Eclipse and Spring architecture style.  Each 

GumTree application is built on 4 layers: 

1. Application platform – a very generic application 

container for running any desktop or server 

application. 

2. Application framework – a set of generic 

framework for building feature rich application.  

3. Scientific framework – provides instrument 

control / data analysis application building blocks. 

4. Instrument customisation – instrument specific 

logic and algorithm for supporting very specific 

user groups. 

Each GumTree application layer contains a set of plug-

ins (Java module), which provides coherent features and 

extension point to allow other plug-ins to contribute.

 

Figure 3: The architectural layer for the GumTree application 



This layered and modular approach in GumTree is the 

natural extension to the object oriented architecture 

(OOA).  The design of platform also involves two other 

architectural approaches to make GumTree more scalable: 

• Service oriented architecture (SOA) – application 

logics are writing in form of simple objects, known 

as services, so that they can be injected and reused 

within the application easily. 

• Resource oriented architecture (ROA) – any 

information that can be named is abstracted to 

“resource”, for examples: document, image, database 

record, device, application state and functionality 

(service).  Each resource has unique identifier in 

form of URI.  This architectural style provides a 

simple and uniform way of resource discovery and 

manipulation.  The GumTree server uses this 

extensively for providing instrument remote access. 

Design Philosophy 

The design of GumTree follows 3 important principles: 

1. Minimal infrastructure – design APIs based on 

only few but powerful concepts, because less 

means less for developers to learn and maintain.  In 

order to achieve this, concepts need to be simple 

but be able to span into various application.  For 

example, the GumTree Cicada process framework 

is powerful enough for the use of data analysis or 

data acquisition. 

2. User Experience – providing initiative user 

features are measurement of project’s success.  

Software is useless unless users can use it within 

their comfort zone.  Many GumTree components 

are designed and customised to keep user to focus 

on their tasks. 

3. Customisations – this is about leveraging the 

building blocks (principle 1) and make them 

available to fulfil user requirements (principle 2). 

IV. CONCLUSION 

GumTree has already been used to collect data for high 

resolution power diffractometer (Echidna), residual stress 

diffractometer (Kowari), small angle neutron scattering 

(Quokka), and high intensity power diffractometer 

(Wombat).  Few more constructing and commissioning 

instruments at ANSTO and NECSA (South Africa) have 

been planned to use the GumTree system.  The future 

direction of the project will focus on providing a more 

mature scripting support for data analysis, and data 

management integration.  GumTree is an active open 

source project hosted at Codehaus 

(http://gumtree.codehaus.org/).  Facility collaboration on 

the project is welcome. 

REFERENCES 

[1] I. Skerrett, “Creating Micro-platforms”, 

http://ianskerrett.wordpress.com/2006/05/23/creating

-micro-platforms/ 

[2] A. Götz and N. Hauser, “Grad Unified Model for 

Control System”, NOBUGS 2004 Conference, 

http://lns00.psi.ch/nobugs2004/papers/paper00125.pd

f 

[3] M. Könnecke and M. Zolliker, “Treepath Based 

Instrument Control”, NOBUGS 20008 Conference, 

http://www.nbi.ansto.gov.au/nobugs2008/papers/pap

er132.pdf 

[4] “Introduction to Service Data Objects”, 

http://www.ibm.com/developerworks/java/library/j-

sdo/ 

[5] T. Lam, A. Götz, F. Franceschini, N. Hauser. 

“GumTree - A Java Based GUI Framework for 

Beamline Experiments”, Journal of Neutron Research 

(2006) 

[6] T.Lam, N.Hauser, et al., “GumTree - An Integrated 

Scientific Experiment Environment”, Physica B, 385-

386 (2006) 

[7] I. Forrester, “Pipelines: Plumbing for the next web”, 

http://www.princexml.com/howcome/2007/xtech/pap

ers/output/0082-32/index.xhtml 

[8] N. Xiong and P.Hathaway, “Multi-platform Processor 

Framework for Data Analysis, Data Acquisition and 

Simulation”, ICALEPCS 2009 Conference, THP076 

[9] T. Lam, “Controlling instrument in the RESTful way”, 

NOBUGS 2008 Conference, 

http://www.nbi.ansto.gov.au/nobugs2008/talks/157.p

pt 

[10] J. Thelin, “A Comparison of Service-oriented, 

Resource-oriented, and Object-oriented Architecture 

Styles”, 

http://www.thearchitect.co.uk/presentations/arch-

styles/3-arch-styles.pdf

 

 


