forked from jiayi-ma/FusionGAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
287 lines (246 loc) · 10.3 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
# -*- coding: utf-8 -*-
"""
Scipy version > 0.18 is needed, due to 'mode' option from scipy.misc.imread function
"""
import os
import glob
import h5py
import random
import matplotlib.pyplot as plt
from PIL import Image # for loading images as YCbCr format
import scipy.misc
import scipy.ndimage
import numpy as np
import tensorflow as tf
import cv2
FLAGS = tf.app.flags.FLAGS
def read_data(path):
"""
Read h5 format data file
Args:
path: file path of desired file
data: '.h5' file format that contains train data values
label: '.h5' file format that contains train label values
"""
with h5py.File(path, 'r') as hf:
data = np.array(hf.get('data'))
label = np.array(hf.get('label'))
return data, label
def preprocess(path, scale=3):
"""
Preprocess single image file
(1) Read original image as YCbCr format (and grayscale as default)
(2) Normalize
(3) Apply image file with bicubic interpolation
Args:
path: file path of desired file
input_: image applied bicubic interpolation (low-resolution)
label_: image with original resolution (high-resolution)
"""
#读到图片
image = imread(path, is_grayscale=True)
#将图片label裁剪为scale的倍数
label_ = modcrop(image, scale)
# Must be normalized
image = (image-127.5 )/ 127.5
label_ = (image-127.5 )/ 127.5
#下采样之后再插值
input_ = scipy.ndimage.interpolation.zoom(label_, (1./scale), prefilter=False)
input_ = scipy.ndimage.interpolation.zoom(input_, (scale/1.), prefilter=False)
return input_, label_
def prepare_data(sess, dataset):
"""
Args:
dataset: choose train dataset or test dataset
For train dataset, output data would be ['.../t1.bmp', '.../t2.bmp', ..., '.../t99.bmp']
"""
if FLAGS.is_train:
filenames = os.listdir(dataset)
data_dir = os.path.join(os.getcwd(), dataset)
data = glob.glob(os.path.join(data_dir, "*.bmp"))
data.extend(glob.glob(os.path.join(data_dir, "*.tif")))
#将图片按序号排序
data.sort(key=lambda x:int(x[len(data_dir)+1:-4]))
else:
data_dir = os.path.join(os.sep, (os.path.join(os.getcwd(), dataset)))
data = glob.glob(os.path.join(data_dir, "*.bmp"))
data.extend(glob.glob(os.path.join(data_dir, "*.tif")))
data.sort(key=lambda x:int(x[len(data_dir)+1:-4]))
#print(data)
return data
def make_data(sess, data, label,data_dir):
"""
Make input data as h5 file format
Depending on 'is_train' (flag value), savepath would be changed.
"""
if FLAGS.is_train:
#savepath = os.path.join(os.getcwd(), os.path.join('checkpoint',data_dir,'train.h5'))
savepath = os.path.join('.', os.path.join('checkpoint_20',data_dir,'train.h5'))
if not os.path.exists(os.path.join('.',os.path.join('checkpoint_20',data_dir))):
os.makedirs(os.path.join('.',os.path.join('checkpoint_20',data_dir)))
else:
savepath = os.path.join('.', os.path.join('checkpoint_20',data_dir,'test.h5'))
if not os.path.exists(os.path.join('.',os.path.join('checkpoint_20',data_dir))):
os.makedirs(os.path.join('.',os.path.join('checkpoint_20',data_dir)))
with h5py.File(savepath, 'w') as hf:
hf.create_dataset('data', data=data)
hf.create_dataset('label', data=label)
def imread(path, is_grayscale=True):
"""
Read image using its path.
Default value is gray-scale, and image is read by YCbCr format as the paper said.
"""
if is_grayscale:
#flatten=True 以灰度图的形式读取
return scipy.misc.imread(path, flatten=True, mode='YCbCr').astype(np.float)
else:
return scipy.misc.imread(path, mode='YCbCr').astype(np.float)
def modcrop(image, scale=3):
"""
To scale down and up the original image, first thing to do is to have no remainder while scaling operation.
We need to find modulo of height (and width) and scale factor.
Then, subtract the modulo from height (and width) of original image size.
There would be no remainder even after scaling operation.
"""
if len(image.shape) == 3:
h, w, _ = image.shape
h = h - np.mod(h, scale)
w = w - np.mod(w, scale)
image = image[0:h, 0:w, :]
else:
h, w = image.shape
h = h - np.mod(h, scale)
w = w - np.mod(w, scale)
image = image[0:h, 0:w]
return image
def input_setup(sess,config,data_dir,index=0):
"""
Read image files and make their sub-images and saved them as a h5 file format.
"""
# Load data path
if config.is_train:
#取到所有的原始图片的地址
data = prepare_data(sess, dataset=data_dir)
else:
data = prepare_data(sess, dataset=data_dir)
sub_input_sequence = []
sub_label_sequence = []
padding = abs(config.image_size - config.label_size) / 2 # 6
if config.is_train:
for i in xrange(len(data)):
#input_, label_ = preprocess(data[i], config.scale)
input_=(imread(data[i])-127.5)/127.5
label_=input_
if len(input_.shape) == 3:
h, w, _ = input_.shape
else:
h, w = input_.shape
#按14步长采样小patch
for x in range(0, h-config.image_size+1, config.stride):
for y in range(0, w-config.image_size+1, config.stride):
sub_input = input_[x:x+config.image_size, y:y+config.image_size] # [33 x 33]
#注意这里的padding,前向传播时由于卷积是没有padding的,所以实际上预测的是测试patch的中间部分
sub_label = label_[x+padding:x+padding+config.label_size, y+padding:y+padding+config.label_size] # [21 x 21]
# Make channel value
if data_dir == "Train":
sub_input=cv2.resize(sub_input, (config.image_size/4,config.image_size/4),interpolation=cv2.INTER_CUBIC)
sub_input = sub_input.reshape([config.image_size/4, config.image_size/4, 1])
sub_label=cv2.resize(sub_label, (config.label_size/4,config.label_size/4),interpolation=cv2.INTER_CUBIC)
sub_label = sub_label.reshape([config.label_size/4, config.label_size/4, 1])
print('error')
else:
sub_input = sub_input.reshape([config.image_size, config.image_size, 1])
sub_label = sub_label.reshape([config.label_size, config.label_size, 1])
sub_input_sequence.append(sub_input)
sub_label_sequence.append(sub_label)
else:
#input_, label_ = preprocess(data[2], config.scale)
#input_=np.lib.pad((imread(data[index])-127.5)/127.5,((padding,padding),(padding,padding)),'edge')
#label_=input_
input_=(imread(data[index])-127.5)/127.5
if len(input_.shape) == 3:
h_real, w_real, _ = input_.shape
else:
h_real, w_real = input_.shape
padding_h=config.image_size-((h_real+padding)%config.label_size)
padding_w=config.image_size-((w_real+padding)%config.label_size)
input_=np.lib.pad(input_,((padding,padding_h),(padding,padding_w)),'edge')
label_=input_
h,w=input_.shape
#print(input_.shape)
# Numbers of sub-images in height and width of image are needed to compute merge operation.
nx = ny = 0
for x in range(0, h-config.image_size+1, config.stride):
nx += 1; ny = 0
for y in range(0, w-config.image_size+1, config.stride):
ny += 1
sub_input = input_[x:x+config.image_size, y:y+config.image_size] # [33 x 33]
sub_label = label_[x+padding:x+padding+config.label_size, y+padding:y+padding+config.label_size] # [21 x 21]
sub_input = sub_input.reshape([config.image_size, config.image_size, 1])
sub_label = sub_label.reshape([config.label_size, config.label_size, 1])
sub_input_sequence.append(sub_input)
sub_label_sequence.append(sub_label)
"""
len(sub_input_sequence) : the number of sub_input (33 x 33 x ch) in one image
(sub_input_sequence[0]).shape : (33, 33, 1)
"""
# Make list to numpy array. With this transform
arrdata = np.asarray(sub_input_sequence) # [?, 33, 33, 1]
arrlabel = np.asarray(sub_label_sequence) # [?, 21, 21, 1]
#print(arrdata.shape)
make_data(sess, arrdata, arrlabel,data_dir)
if not config.is_train:
print(nx,ny)
print(h_real,w_real)
return nx, ny,h_real,w_real
def imsave(image, path):
return scipy.misc.imsave(path, image)
def merge(images, size):
h, w = images.shape[1], images.shape[2]
img = np.zeros((h*size[0], w*size[1], 1))
for idx, image in enumerate(images):
i = idx % size[1]
j = idx // size[1]
img[j*h:j*h+h, i*w:i*w+w, :] = image
return (img*127.5+127.5)
def gradient(input):
#filter_x=tf.reshape(tf.constant([[-1.,0.,1.],[-1.,0.,1.],[-1.,0.,1.]]),[3,3,1,1])
#filter_y=tf.reshape(tf.constant([[-1.,-1.,-1],[0,0,0],[1,1,1]]),[3,3,1,1])
#d_x=tf.nn.conv2d(input,filter_x,strides=[1,1,1,1], padding='SAME')
#d_y=tf.nn.conv2d(input,filter_y,strides=[1,1,1,1], padding='SAME')
#d=tf.sqrt(tf.square(d_x)+tf.square(d_y))
filter=tf.reshape(tf.constant([[0.,1.,0.],[1.,-4.,1.],[0.,1.,0.]]),[3,3,1,1])
d=tf.nn.conv2d(input,filter,strides=[1,1,1,1], padding='SAME')
#print(d)
return d
def weights_spectral_norm(weights, u=None, iteration=1, update_collection=None, reuse=False, name='weights_SN'):
with tf.variable_scope(name) as scope:
if reuse:
scope.reuse_variables()
w_shape = weights.get_shape().as_list()
w_mat = tf.reshape(weights, [-1, w_shape[-1]])
if u is None:
u = tf.get_variable('u', shape=[1, w_shape[-1]], initializer=tf.truncated_normal_initializer(), trainable=False)
def power_iteration(u, ite):
v_ = tf.matmul(u, tf.transpose(w_mat))
v_hat = l2_norm(v_)
u_ = tf.matmul(v_hat, w_mat)
u_hat = l2_norm(u_)
return u_hat, v_hat, ite+1
u_hat, v_hat,_ = power_iteration(u,iteration)
sigma = tf.matmul(tf.matmul(v_hat, w_mat), tf.transpose(u_hat))
w_mat = w_mat/sigma
if update_collection is None:
with tf.control_dependencies([u.assign(u_hat)]):
w_norm = tf.reshape(w_mat, w_shape)
else:
if not(update_collection == 'NO_OPS'):
print(update_collection)
tf.add_to_collection(update_collection, u.assign(u_hat))
w_norm = tf.reshape(w_mat, w_shape)
return w_norm
def lrelu(x, leak=0.2):
return tf.maximum(x, leak * x)
def l2_norm(input_x, epsilon=1e-12):
input_x_norm = input_x/(tf.reduce_sum(input_x**2)**0.5 + epsilon)
return input_x_norm