forked from deepinsight/insightface
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathonnx_helper.py
184 lines (167 loc) · 7.2 KB
/
onnx_helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
from __future__ import division
import datetime
import os
import os.path as osp
import glob
import numpy as np
import cv2
import sys
import onnxruntime
import onnx
from onnx import numpy_helper
class ArcFaceORT:
def __init__(self, model_path):
self.model_path = model_path
#return error message, return None if success
def check(self, track='ms1m', test_img = None):
#default is cfat
max_model_size_mb=1024
max_feat_dim=512
max_time_cost=10
if track.startswith('glint'):
max_model_size_mb=1024
max_feat_dim=1024
max_time_cost=20
if not os.path.exists(self.model_path):
return "model_path not exists"
if not os.path.isdir(self.model_path):
return "model_path should be directory"
onnx_files = []
for _file in os.listdir(self.model_path):
print('file_:', _file)
if _file.endswith('.onnx'):
onnx_files.append(osp.join(self.model_path, _file))
if len(onnx_files)==0:
return "do not have onnx files"
self.model_file = sorted(onnx_files)[-1]
print('use onnx-model:', self.model_file)
session = onnxruntime.InferenceSession(self.model_file, None)
try:
session = onnxruntime.InferenceSession(self.model_file, None)
except:
return "load onnx failed"
input_cfg = session.get_inputs()[0]
input_shape = input_cfg.shape
print('input-shape:', input_shape)
if len(input_shape)!=4:
return "length of input_shape should be 4"
if not isinstance(input_shape[0], str):
#return "input_shape[0] should be str to support batch-inference"
print('reset input-shape[0] to None')
model = onnx.load(self.model_file)
model.graph.input[0].type.tensor_type.shape.dim[0].dim_param = 'None'
new_model_file = osp.join(self.model_path, 'zzzzrefined.onnx')
onnx.save(model, new_model_file)
self.model_file = new_model_file
print('use new onnx-model:', self.model_file)
try:
session = onnxruntime.InferenceSession(self.model_file, None)
except:
return "load onnx failed"
input_cfg = session.get_inputs()[0]
input_shape = input_cfg.shape
print('new-input-shape:', input_shape)
self.image_size = tuple(input_shape[2:4][::-1])
#print('image_size:', self.image_size)
input_name = input_cfg.name
outputs = session.get_outputs()
output_names = []
for o in outputs:
output_names.append(o.name)
#print(o.name, o.shape)
if len(output_names)!=1:
return "number of output nodes should be 1"
self.session = session
self.input_name = input_name
self.output_names = output_names
#print(self.output_names)
model = onnx.load(self.model_file)
graph = model.graph
if len(graph.node)<8:
return "too small onnx graph"
input_size = (112,112)
self.crop = None
if input_size!=self.image_size:
return "input-size is inconsistant with onnx model input, %s vs %s"%(input_size, self.image_size)
self.model_size_mb = os.path.getsize(self.model_file) / float(1024*1024)
if self.model_size_mb > max_model_size_mb:
return "max model size exceed, given %.3f-MB"%self.model_size_mb
input_mean = None
input_std = None
if input_mean is not None or input_std is not None:
if input_mean is None or input_std is None:
return "please set input_mean and input_std simultaneously"
else:
find_sub = False
find_mul = False
for nid, node in enumerate(graph.node[:8]):
print(nid, node.name)
if node.name.startswith('Sub') or node.name.startswith('_minus'):
find_sub = True
if node.name.startswith('Mul') or node.name.startswith('_mul'):
find_mul = True
if find_sub and find_mul:
#mxnet arcface model
input_mean = 0.0
input_std = 1.0
else:
input_mean = 127.5
input_std = 127.5
self.input_mean = input_mean
self.input_std = input_std
for initn in graph.initializer:
weight_array = numpy_helper.to_array(initn)
# if weight_array.dtype!=np.float32:
# return 'all weights should be float32 dtype'
dt = weight_array.dtype
if dt.itemsize < 4:
return 'invalid weight type - (%s:%s)' % (initn.name, dt.name)
if test_img is None:
test_img = np.random.randint(0, 255, size=(self.image_size[1], self.image_size[0], 3), dtype=np.uint8 )
else:
test_img = cv2.resize(test_img, self.image_size)
feat, cost = self.benchmark(test_img)
if feat.shape[1] > max_feat_dim:
return "max feat dim exceed, given %d"%feat.shape[1]
self.feat_dim = feat.shape[1]
cost_ms = cost*1000
if cost_ms>max_time_cost:
return "max time cost exceed, given %.4f"%cost_ms
self.cost_ms = cost_ms
print('check stat:, model-size-mb: %.4f, feat-dim: %d, time-cost-ms: %.4f, input-mean: %.3f, input-std: %.3f'%(self.model_size_mb, self.feat_dim, self.cost_ms, self.input_mean, self.input_std))
return None
def meta_info(self):
return {'model-size-mb':self.model_size_mb, 'feature-dim':self.feat_dim, 'infer': self.cost_ms}
def forward(self, imgs):
if not isinstance(imgs, list):
imgs = [imgs]
input_size = self.image_size
if self.crop is not None:
nimgs = []
for img in imgs:
nimg = img[self.crop[1]:self.crop[3],self.crop[0]:self.crop[2],:]
if nimg.shape[0]!=input_size[1] or nimg.shape[1]!=input_size[0]:
nimg = cv2.resize(nimg, input_size)
nimgs.append(nimg)
imgs = nimgs
blob = cv2.dnn.blobFromImages(imgs, 1.0/self.input_std, input_size, (self.input_mean, self.input_mean, self.input_mean), swapRB=True)
net_out = self.session.run(self.output_names, {self.input_name : blob})[0]
return net_out
def benchmark(self, img):
input_size = self.image_size
if self.crop is not None:
nimg = img[self.crop[1]:self.crop[3],self.crop[0]:self.crop[2],:]
if nimg.shape[0]!=input_size[1] or nimg.shape[1]!=input_size[0]:
nimg = cv2.resize(nimg, input_size)
img = nimg
blob = cv2.dnn.blobFromImage(img, 1.0/self.input_std, input_size, (self.input_mean, self.input_mean, self.input_mean), swapRB=True)
costs = []
for _ in range(50):
ta = datetime.datetime.now()
net_out = self.session.run(self.output_names, {self.input_name : blob})[0]
tb = datetime.datetime.now()
cost = (tb-ta).total_seconds()
costs.append(cost)
costs = sorted(costs)
cost = costs[5]
return net_out, cost