diff --git a/data_loaders/humanml/data/dataset.py b/data_loaders/humanml/data/dataset.py index 4f0fbbaf..df8ee956 100644 --- a/data_loaders/humanml/data/dataset.py +++ b/data_loaders/humanml/data/dataset.py @@ -719,25 +719,23 @@ def __getitem__(self, item): # A wrapper class for t2m original dataset for MDM purposes class HumanML3D(data.Dataset): - def __init__(self, mode, datapath='./dataset/humanml_opt.txt', split="train", **kwargs): + def __init__(self, mode, datapath='./dataset/humanml_opt.txt', base_path='.', split="train", **kwargs): self.mode = mode self.dataset_name = 't2m' self.dataname = 't2m' # Configurations of T2M dataset and KIT dataset is almost the same - abs_base_path = f'.' - dataset_opt_path = pjoin(abs_base_path, datapath) + dataset_opt_path = pjoin(base_path, datapath) device = None # torch.device('cuda:4') # This param is not in use in this context opt = get_opt(dataset_opt_path, device) - opt.meta_dir = pjoin(abs_base_path, opt.meta_dir) - opt.motion_dir = pjoin(abs_base_path, opt.motion_dir) - opt.text_dir = pjoin(abs_base_path, opt.text_dir) - opt.model_dir = pjoin(abs_base_path, opt.model_dir) - opt.checkpoints_dir = pjoin(abs_base_path, opt.checkpoints_dir) - opt.data_root = pjoin(abs_base_path, opt.data_root) - opt.save_root = pjoin(abs_base_path, opt.save_root) - opt.meta_dir = './dataset' + opt.meta_dir = os.path.dirname(dataset_opt_path) + opt.motion_dir = pjoin(base_path, opt.motion_dir) + opt.text_dir = pjoin(base_path, opt.text_dir) + opt.model_dir = pjoin(base_path, opt.model_dir) + opt.checkpoints_dir = pjoin(base_path, opt.checkpoints_dir) + opt.data_root = pjoin(base_path, opt.data_root) + opt.save_root = pjoin(base_path, opt.save_root) self.opt = opt print('Loading dataset %s ...' % opt.dataset_name) @@ -760,7 +758,7 @@ def __init__(self, mode, datapath='./dataset/humanml_opt.txt', split="train", ** if mode == 'text_only': self.t2m_dataset = TextOnlyDataset(self.opt, self.mean, self.std, self.split_file) else: - self.w_vectorizer = WordVectorizer(pjoin(abs_base_path, 'glove'), 'our_vab') + self.w_vectorizer = WordVectorizer(pjoin(base_path, 'glove'), 'our_vab') self.t2m_dataset = Text2MotionDatasetV2(self.opt, self.mean, self.std, self.split_file, self.w_vectorizer) self.num_actions = 1 # dummy placeholder